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Getting started with AcouSTO

CHAPTER 1

This is where you learn about
system setup and

AcouSTO installation
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1.1 Native installation

This chapter deals with the procedure to get AcouSTO working on your machine. The
code has been developed and heavily tested on Linux and OSX machines using standard
development tools and configuration structure. In principle, AcouSTO should run without
troubles on any machine equipped with a UNIX–like OS and meeting the prerequisites
(see Section 1.1.1).

A native version for Microsoft Windows is not available. A Cygwin environment should be
enough to compile and run the code (but we have never tested this possibility). Windows
users can modify the Makefile themselves to make AcouSTO compile and run natively in a
Windows environment. In this case, they must keep in mind that they are on their own.

Starting from AcouSTO v2.0, Windows users can easily run AcouSTO within a dedicated
Docker container, as described in Section 1.2.

1.1 Native installation

This section deals with the native installation of AcouSTO on UNIX–like OSs. The proce-
dure is extremely simple, since our code has been developed by making use of standard
languages and libraries, freely available for all the platforms and architectures.

1.1.1 Prerequisites

The basic prerequisites needed to compile AcouSTO are:

• a C compiler (gcc suggested);

• the complete GNU configure and build system;

• a working MPI-2 implementation (OpenMPI strongly suggested).

• libconfig downloadable from: http://www.hyperrealm.com/libconfig/

• lapack and blas libraries.

• Scalapack and BLACS libraries.

If you want to enable the MySQL save feature you must have libmysqlclient installed
(version >= 5.0).

Some optional tools are required for data visualization:

• a VRML and VTK renderer application such as Mayavi or Paraview;
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1.1 Native installation

• a 2D xy plotting program (e.g., gnuplot or grace).

All the software needed to run AcouSTO has been included into the official
repositories of most of the latest Linux distros, making the installation a
straightforward procedure.

1.1.2 Installation procedure

The code is released with a standard GNU–compliant configuration file. It can be installed
in a system-wide fashion, to make it available to all users, or by a single user for individual
use.

1. download the gzipped tar file from the repository;

2. become superuser;

3. unpack it wherever you like (let’s say /usr/local/tmp);

4. cd to the AcouSTO directory ( /usr/local/tmp/acousto in our case);

5. issue the command ./configure --prefix=exec dir, where exec dir is the loca-
tion where you have choosen to install the executable (the directory exec dir/bin

must be included in your $PATH). Add to the command all the configuration options
that fit to your needs. The complete list of available options is

• --with-mpicc=<mpicc compiler> location of mpicc compiler

• --with-libconfig=<config lib dir> location of libconfig lib

• --with-libmysqlclient=<mysqlclient lib dir> location of MySQL client lib

• --enable-mpinew to link to openMPI ≥ 1.7

• --with-blacs=<dir> location of BLACS libs

• --with-lapack=<dir> location of Lapack libs

• --with-atlas=<dir> location of Atlas libs

• --with-scalapack=<dir> location of Scalapack libs

• --with-blas=<dir> location of BLAS libs

• --enable-scalapack new to link to Scalapack version ≥ 2.0

• --with-intel-libs=<dir> to be used together with --enable-intel

• --with-libs=<dir> if all your libraries are installed in the same place, you can
use only this options.

• --enable-intel builds with intel compiler (default is gcc).

• --enable-mysql=<yes|no> if “yes” enables the MySQL save feature (see Ap-
pendix D). Default is “no”.
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1.1 Native installation

6. compile and install AcouSTO with make followed by make install

If, for example, you have the files1

• liblapack.a

• libscalapack.a

• libblacsCinit MPI.a

• libblacs MPI.a

in the directory /usr/local/mylibs, you can start the configuration issuing the command:

configure --with-scalapack=/usr/local/mylibs --with-blacs=/usr/local/mylibs \

--with-lapack=/usr/local/mylibs

or, equivalently,

configure --with-libs=/usr/local/mylibs

Users of libconfig version earlier than 1.3.2 must define the flag
HAVE OLD LIBCONFIG issuing the command

• export CFLAGS=-DHAVE OLD LIBCONFIG in bash

• setenv CFLAGS -DHAVE OLD LIBCONFIG in csh

before starting the configuration of the code.

1Note that the AcouSTO configuration script is able to recognise most of the possible names given to the
BLACS libraries in the different environments. Nevertheless, very special installations might need some
adaptation. In most of the case, a typical workaround is to establish symbolic links to the libraries using
standard names, such the ones we are using here.
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1.2 The AcouSTO Docker container

In version 1.6, two new important configuration options have been intro-
duced.

1. If the installed version of OpenMPI is ≥ 1.7 the name of the FORTRAN
interface library has changed. To compile AcouSTO against the newer versions
of OpenMPI use the configuration options

--enable-mpinew

2. If Scalapack version is ≥ 2.0 the BLACS libraries are embedded into the scala-
pack file. Now AcouSTO can be linked directly to the new Scalapack using the
configuration option

--enable-scalapack new

1.2 The AcouSTO Docker container

In AcouSTO version 2.0 has been introduced the possibility to build a Docker container
from a Dockerfile to run a virtual machine ready for standard AcouSTO use on all the
architectures supported. The building of the Docker image is extremely simple and the
resulting container runs flawlessly under all host OSs. The advantage of such an approach

Figure 1.1: AcouSTO Docker container running under Windows 10, with data visualization
using Windows–native version of Paraview.

with respect to the standard virtualization based on the full installation of a guest OS
onto a virtualization environment is in the extreme lightweight of the underlining soft-
ware layers. Docker containers use less RAM, start almost instantly and have a much
more efficient use of the resources (http://www.docker.com for details). Using the Docker
container, AcouSTO can be run on all OSs with the same straightforward installation pro-
cedure. Figure 1.1 shows AcouSTO running within the Power Shell of Windows 10, with
the Windows–native version of Paraview used to visualise the results. Two procedures
can be followed to run the AcouSTO container: i) build the Docker image on your system
using the acousto dockerfile; ii) run directly the prebuilt image from the Docker Hub. The
two procedures yield exactly the same result, so you shouldn’t expect better performances
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from the locally–built image. The choice depends on whether you are interested or not
in the development of your personal images by modifying the dockerfile, or simply by
your personal attitude in doing things by yourself. Whatever procedure you choose, you
must first install Docker on your system. Go to http://www.docker.com and follow the
installation instructions. Very simple and fast. You shouldn’t have problems. After this,
follow the instructions below.

Build and run the image from the dockerfile

Four steps are needed to build locally an image of the AcouSTO container.

1. Download the file acousto dockerfile from the AcouSTO website and save on your
hard disk. The dockerfile location is totally irrelevant to the success of the build-
ing process. The dockerfile contains the Docker commands needed to build the
AcouSTO image from the Debian official one.

2. Open a terminal (under OSX or Linux), the command prompt under Windows 7,
or the Power Shell under Windows 8, 8.1 or 10. You can also use the interfaces
installed with Docker (Kinematics, Docker terminal ...).

3. Change current directory to the one where the acousto dockerfile is and give the
command

docker build -t name-of-acousto-image -f ./acousto dockerfile .

The command builds the docker image with the name name-of-acousto-image

following the sequence of commands in the dockerfile. It seems that, at least in my
systems, image tag can include only numbers and lowercase letters. It takes few
minutes to complete. Warnings will appear during the process. Just ignore them.

4. Run the built image with the command

docker run -t -i name-of-acousto-image /bin/bash

You are now logged into the AcouSTO virtual machine as user acousto (password
acousto), under the path $HOME/acousto-X.Y where X.Y is the installed version of
AcouSTO . User acousto has superuser privileges.

Run a pre–built image from Docker Hub

If you prefer to download a pre-built image from the Docker Hub, you have to open a
terminal (or command prompt, or power shell, depending on the hosting OS) and give the
command
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docker run -t -i uiemma/acousto:image-tag /bin/bash

where uiemma/acousto is the name of the AcouSTO repository on the Docker Hub, and
image-tag points to the specific image you are interested in. The format of image-tag is
vXYdistro, where X.Y is the version of AcouSTO installed in the image and distro is the
name of the Linux distribution on which the image is based. So, if you want to run the
Debian–based image installing version v1.6 of AcouSTO then image-tag=v16debian. The
initial login is the same as in point 4 of the previous section.

Work inside the AcouSTO container

At container startup you are dropped into a bash, under the path $HOME/acousto-X.Y,
i.e., the directory containing the AcouSTO vX.Y distribution. You can now work freely as
you do in any Linux box. You can create directories and move around them in the usual
way. You can also install new software from the standard repositories of the Linux distro
on which the container is based. Just remember that all the changes that you apply to your
running image will be lost at the image shutdown. If you want to make permanent changes
you have to save your container into your own image using the docker commit command.
Follow the tutorial at https://docs.docker.com/engine/tutorials/dockerimages/.

You can share data between the container and the host OS in various way. The easiest is
to simply copy the files you want to make available to the host OS using the �docker cp
command. While the container is running, open a shell in the host and give the command

docker cp container-name:/path/to/your/file .

This will save a copy of the file in the host OS current directory. You can also share entire
filesystems by mounting volumes of the host OS in your container. The procedure depends
strongly on your operating system and we address to the Docker website for details.

On a multicore machine you can exploit multithreading within the AcouSTO container,
provided that Docker has been properly configured. On OSX and Windows 10 this can
be easily done using the Docker application installed. On earlier Windows systems, you
have to configure the underlining virtualization environment (typically, Oracle Virtual
Box). The performance that you can obtain using OSX, Linux or Windows 10 hosts are
aligned with that obtainable from native compilation. On earlier Windows versions the
performance strongly depends on the efficiency of the virtualization system. We did some
test only on Windows 7 running Oracle Virtual Box in its default configuration. Results
are presented in Figure 1.2. The test has been run having configured 8 cores for the Docker
machine using the Docker app on OSX and Windows 10 and Virtual Box on Windows 7.
The results show that the speed-up achieved by AcouSTO rurrning in the Debian–based
Docker container are aligned with the corresponding performance of the natively compiled
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version, with the only exception of Windows 7 host OS. These results shouldn’t be used
as a basis for the assessment of the quality of one platform w.r.t. another, but only as a
comparison of what can be obtained by an average user with the default configurations
of the software. Better performances can be likely obtained through a fine tuning of the
virtualization environment, not addressed here.

Docker images can be also used on large clusters basd on MPI2. AcouSTO can take advan-
tage from this feature to setup (in user space) a HPC environment with a limited effort.
The interested user is addressed to the Docker website to learn how to do. Other useful
references can be found, for instance, at

• http://qnib.org/mpi-paper

• http://arxiv.org/pdf/1509.08231

• http://insidehpc.com/2015/08/video-docker-for-hpc-in-a-nutshell/

We do not provide specific instructions about this point, since they strongly depend on
the specific system configurations.

Figure 1.2: AcouSTO multithreading speed-up of the Debian–based AcouSTO Docker VM
running under different OS for two CPU architectures. Thick dashed lines refer to standard
AcouSTO native compilation under OSX El Capitan for Intel I7 (red) and Xeon X5650
(green).
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AcouSTO - A general overview

CHAPTER 2

This is where we tell you about
what AcouSTO is
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2.1 What AcouSTO is

In this chapter, a general description of the code is given, to help you understand whether
or not AcouSTO could fit to your needs.

2.1 What AcouSTO is

AcouSTO is a boundary element solver solution of the Kirchhoff–Helmholtz Integral Equa-
tion (KHIE). The problem is written in the Laplace domain, and reduces to the classi-
cal single-frequency formulation along the imaginary axis of the Laplace plane (i.e., for
s = j ω). The solution is based on a low–order Boundary Element Method (BEM).

2.1.1 The basic equations

The acoustic problem is written in terms of the velocity potential function ϕ, in the Laplace
domain, to yield

∇2
ϕ̃(x)− κ2

ϕ̃(x) = q̃, for x ∈ V (2.1)

where the •̃ indicates Laplace transformation, whereas q̃ represents the acoustics sources
present in the field, and κ = s/c0 is the complex wave number, being s = α + j ω the
Laplace variable, and c0 the speed of sound in the reference conditions. The formulation of
the problem in the Laplace domain is equivalent to the time convention e

j ω t
. This point

must be kept in mind especially when comparing the results with reference analytical
solutions. The above problem is completed by suitable boundary conditions for x ∈ ∂V
(see Section 4.2). Note that Eq. 2.1 holds for both the velocity potential and the pressure
perturbation. The physical meaning of the solution depends on the context, and is left to
the user to take care of this, by providing the appropriate boundary conditions. When the
problem is addressed in terms of velocity potential, the pressure perturbation p = P −P0

can be obtained from the linearized Bernouilli’s theorem, p̃ = −s % ϕ̃ by simply post-
processing the solution. In most of the examples presented in this document, ϕ̃ is assumed
to be the velocity potential. Using the standard procedure, and assuming q̃ = 0,1 the
boundary integral formulation for the velocity potential has the form

E(y) ϕ̃(y) =

∮
S

(
G
∂ϕ̃

∂n
− ϕ̃∂G

∂n

)
dS(x). (2.2)

where the domain function E(y) is

E(y) =


1 if y ∈ V,
1/2 if y ∈ ∂V,
0 if y /∈ V,

(2.3)

and S = ∂V for internal problems, and S = ∂V\S∞ for external problems.

1The effect of the field sources, and how it is managed in AcouSTO will be discussed in Section 4.2
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2.1 What AcouSTO is

Recalling the expression of the fundamental solution of Eq.2.1, G,

G(x,y, s) =
−e−s θ

4πr
= G0 e

−s θ
with r = ‖x− y‖, and θ =

r

c0

, (2.4)

Eq. 2.2 becomes the familiar KHIE,

E(y) ϕ̃(y) =

∮
S

(
G0

∂ϕ̃

∂n
− ϕ̃∂G0

∂n
+ s ϕ̃G0

∂θ

∂n

)
e
−s θ

dS(x). (2.5)

Equation 2.5 is used in AcouSTO to solve the BVP starting from the boundary conditions,
and to represent the acoustic field once that the solution on the boundary is known.
Specifically, when y ∈ ∂V, Eq. 2.5 yields a integro-differential equation for the unknown
ϕ̃ on the boundary ∂V, which can be solved from the knowledge of the boundary conditions
χ̃ = ∂ϕ̃/∂n; once that the solution is known on ∂V, Eq. 2.5 is used as a boundary integral
representation for ϕ̃ at arbitrary points in the field (the “microphones”) as a function of
the known distributions of ϕ̃ and χ̃ over the boundary.

2.1.2 The numerical solution

The Boundary Integral Equation 2.5 is numerically solved through a Boundary Element
Method (BEM). The boundary of the domain is partitioned into N quadrilateral panels,
and all the quantities are considered to be constant within each panel (zeroth–order ap-
proximation). The surface integral in Eq. 2.5 is approximated with a sum of N panel
integrals, and the collocation method is used, by locating the collocation points at the
centers of the panels. The discrete approximation of Eq. 2.5 is

1

2
ϕ̃n =

N∑
m=1

[Bnm χ̃m + (Cnm + sDnm) ϕ̃m] e−s θnm , n = 1, . . . , N, (2.6)

where the subscripts indicate the evaluation at the corresponding collocation point, χ̃ =
∂ϕ̃/∂n, and the integral coefficients have the form

Bnm =

∫
Sm

G0 dS, Cnm =

∫
Sm

∂G0

∂n
dS, Dnm =

∫
Sm

G0
∂θ

∂n
dS. (2.7)

In AcouSTO , the coefficients 2.7 are evaluated analytically (details will be provided in the
advanced user and programming manual, to be published soon). Collecting the integral
coefficients in Eq. 2.7 into the [N ×N ] complex matrices B, C, and D, and the value of the
velocity potential and its normal derivative respectively into the [N × 1] column vectors
ϕ̃ and χ̃, the solution of the system in matrix form is

• For a Neumann BVP (χ̃ known on the boundary)

ϕ̃ = Y−1 B χ̃ (2.8)
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• For a Dirichlet BVP (ϕ̃ known on the boundary)

χ̃ = B−1 Y ϕ̃ (2.9)

where, in both cases,

Y =

(
1

2
I− C− sD

)
(2.10)

The form of the solving system actually implemented in the code is reported in Section
4.2, where the treatment of the boundary conditions is addressed in detail.

Once the solution of the problem is known on the boundary from Eq. 2.8 or 2.9 , the
same integral formulation is used to evaluate the pressure complex amplitude at the M
microphones. Collecting the value of ϕ̃ at the microphones into the [M × 1] column vector

ϕ̃
M

, yields

ϕ̃
M

= B
M
χ̃+

(
C

M
+ sD

M
)
ϕ̃, (2.11)

where the superscript M indicates the [M ×N ] matrices collecting the integral coefficients
which relates the value of ϕ̃ and χ̃ on the boundary, with the solution at the microphones.

2.1.3 CHIEF regularization

The use of a the KHIE for the analysis of the radiation and scattering of a closed surface
S within the free space is affected by the so–called fictitious eigenfrequencies problem. In
few words, the scattered acoustic field in the unbounded domain surrounding S, exhibits
non–physical resonances, which are related to the eigensolutions of the interior problem
defined in the (fictitious) acoustic cavity enclosed by S. Specifically, the solution of the
exterior problem with Neumann boundary conditions is singular at the eigenfrequncies
of the interior Dirichlet problem, whereas the eigenfrequencies of the interior Neumann
BVP affects the solution of the exterior Dirichlet problem (see e.g., Colton & Kress, [6]).
AcouSTO includes the possibility to regularize the BEM exterior solution using the CHIEF
technique (Combined Helmholtz Integral Equation Formulation, Schenck [3]). The advan-
tage of this technique resides its implementation simplicity; the drawback is a reduced
reliability at high frequency or, in general, at those frequencies corresponding to a range
of high modal density for the enclosure bounded by S.2

The basis of the CHIEF technique is the introduction of N
C

additional collocation points
inside S. At these additional locations, the solution of the exterior problem is zero, and
the system of equations 2.8 can be augmented by the additional equations corresponding

2The use of a more reliable regularization technique, such as the CONDOR (Composite Normal Deriva-
tive Overlapping Relation) method [11], is certainly one of the improvement that will be included in one
of the future releases of AcouSTO .

17 c© U. Iemma & V. Marchese



2.1 What AcouSTO is

Figure 2.1: CHIEF regularization of the acoustic potential on the boundary of a unit
sphere. The amplitude spectrum in the vicinity of the fictitious eigenfrequency corre-
sponding to a reduced frequency ka = π is compared with the un-regularized solution.

to the CHIEF points. This yields an over–determined system of N +N
C

equations for N
unknown. The solution can be found by minimizing the quadratic form

J(ϕ̃) =
1

2

(
Ŷ ϕ̃− b̃

)∗T (
Ŷ ϕ̃− b̃

)
(2.12)

where

Ŷ =

[
Y

−C
C − sD

C

]
, b̃ =

[
B

B
C

]
χ̃, (2.13)

and the superscript C indicates the coefficients influencing the CHIEF collocation points.
The solution is given by

ϕ̃ =
(

Ŷ∗T Ŷ
)−1

Ŷ∗T b̃. (2.14)

Additional details will be given in the advanced user’s and programmer’s manual, or can
be found in Gennaretti & Iemma [5] or in Seybert & Rengarajan [4].

For a basic use of AcouSTO the user has only to define the locations of the internal colloca-
tion points, following the procedure explained in Section 4.1. Figure 2.1 shows the effect
of the CHIEF regularization technique on the spectrum
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2.2 What AcouSTO can do

2.2 What AcouSTO can do

Using the formulation presented in the previous Section, the following classes of problems
can be solved:

• scattering of planar or spherical waves by multiple, arbitrarily shaped, bodies ;

• radiation of vibrating closed surfaces with wall motion assigned.

There is no limitation in the number of incident waves. Moreover, the possibility to include
an arbitrary incident field from external data (let’s say, the pressure field calculated with
a CFD code or from experiments) is in preparation. This option will be available in the
next release of the code.

Both interior and exterior problem can be solved, providing the appropriate topology in
the definition of the BEM mesh (see Section 3.1).

The present version of the code can’t handle moving surfaces, nor moving sources. These
features will be included soon.

NOTE
With AcouSTO one can choose two different approaches to the solution: in
the first one (formulation A), Eq. 2.5 is written for the total field, which
is the sum of the incident and the scattered fields, ϕ̃ = ϕ̃ inc + ϕ̃ sc, whereas
in the second (formulation B), the unknown field is ϕ̃ sc, and the effect
of the incident field is included in the boundary conditions. The choice
between the two formulations can be made following the instructions
presented in Section 4.2
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Setup of domain geometry

CHAPTER 3

This is where you learn about
the setup of geometries, meshes and

microphones
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3.1 BEM grid topology

The structure of the input files needed by AcouSTO is explained in detail in Appendix
A. Basically, the user has to prepare a main configuration file plus a bunch of additional
files. The number and the content of these files depend on the problem to be solved. In
the present chapter, the fundamental rules required to properly setup our acoustic BEM
simulation are given. Specifically, the BEM mesh topology is described in Section 3.1,
whereas the symmetry management is addressed in Section 3.3.

Starting from AcouSTO v1.6, the possibility to import a boundary mesh generated with
the public domain grid generator Gmsh (http://geuz.org/gmsh/) has been included.
AcouSTO is compatible with Gmsh version ≥ 2.7. Only ASCII .msh files are accepted,
using format version ≥ 2.2. Details about the Gmsh interface are given is Section 3.4.

It is important to notice that the management of symmetries when using Gmsh files as an
input slightly differs from the one used with the native AcouSTO format. Details are given
in Section 3.5.

3.1 BEM grid topology

AcouSTO can only generate simple geometries (sphere, cylinder, plate). For more complex
geometries you must provide a “nodes” file following the syntax described in Section B.
You can generate the geometry using the powerful modeler Blender (http://www.blender.org)
and export the AcouSTO nodes file with the plugin provided with the distribution (see
Appendix C). Alternatively, you can feed AcouSTO with a mesh file produced with
Gmsh (http://gmsh.info). Although all methods are perfectly equivalent, we strongly
suggest to adopt Gmsh as the standard modeling tool.

Whatevert method you use, yopu must have a clear idea of the way AcouSTO handles the
BEM grid. Always pay attention to the ordering of the panels’ vertices, for it defines the
orientation of the panel surface, i.e., the orientation of the vector normals to each element.
The differential description of the panel geometry depends on this choice, and a wrong
order of the vertices results in a miscalculation of the local covariant base vectors. The
local curvilinear coordinates, ξ1 and ξ2 , are such that ξ

k
∈ [−1, 1], for k = 1, 2 (see Figure

3.1). The covariant base vectors and the unit normal to the panel are defined as

a1 =
∂x

∂ξ1

, a2 =
∂x

∂ξ2

, n̂ =
a1 × a2

|a1 × a2 |
. (3.1)

This vectors are evaluated numerically by averaging the finite differences along the panel
edges. Indicating with ~v i , i = 1, ..., 4 the position vector of the panel vertices, yields

a1 ' 1

4
(v1 − v4 + v2 − v3) (3.2)

a2 ' 1

4
(v2 − v1 + v3 − v4) . (3.3)
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3.2 AcouSTO native nodes file format

Figure 3.1: Local curvilinear coordinates and covariant base vectors on the panel.

The approximate base vectors obtained with Eq. 3.2 are used to evaluate the unit normal
to the panel according to Eq. 3.1. Clearly, the order of the nodes defining the sequence
of the panel vertices influences the orientation of the unit normal (see Fig. 3.2).

The unit normal vector points towards the side of the panel from which
the sequence of the vertices is seen as counterclockwise.

N
→

4V

2V3V

1V N
→

4V

2V

3V

1V

Figure 3.2: Unit normal orientation.

3.2 AcouSTO native nodes file format

The AcouSTO native format of node files is very simple. The first part of the file is simply
the list of the x, y, and z coordinates of all the nodes, separated by spaces. The second
part of the file contains the definition of the panels as blocks of four integer number
corresponding to the indices of the nodes that are vertices of the panels. If, for example,
the vertices of the k

th
panel are the i

th
, j

th
, n

th
, m

th
nodes, then the k

th
line of the second

block of the file will be i j n m . The indices are stored in the array jnodb(NVERT), which
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3.2 AcouSTO native nodes file format

is the topology connection function between the panel vertices numbering system and the
nodes numbering system.

Although the integration subroutines used in AcouSTO can handle trian-
gular panels, the topology connection function used to define the local
curvilinear coordinates system supports only four vertices per panel. The
only way to include triangular panels is to locate two adjacent vertices
on the same point.

Figure 3.3 depicts a very simple example. Let’s assume a cubic surface divided into six
panels, corresponding to its six faces. The eight nodes N i , i = 1, ..., 8, are ordered as
in figure. Assume also that node N5 corresponds to the origin of the global coordinates
system used, and that the cube edges are 1 m long. This mesh (useless, for practical
purposes) can be used to analyze both the interior and exterior problems, depending on
the orientation of the unit normal vectors. As we have seen, the latter depends on the

Figure 3.3: A simple example.

ordering of the vertices. In the following, the structure of the geometry file is given for
the outward and inward pointing normals, respectively.

Mesh 1 - Content of node file for test case in Fig. 3.3 with normal vectors pointing
outward.

0.0 0.0 1.0

1.0 0.0 1.0

0.0 1.0 1.0

1.0 1.0 1.0

0.0 0.0 0.0

0.0 1.0 0.0

1.0 1.0 0.0
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3.3 Symmetry management in AcouSTO native format

7 5 1 3

6 8 4 2

6 2 1 5

8 7 3 4

5 7 8 6

4 3 1 2

Mesh 2 - Content of node file for test case in Fig. 3.3 with normal vectors pointing
inward.

0.0 0.0 1.0

1.0 0.0 1.0

0.0 1.0 1.0

1.0 1.0 1.0

0.0 0.0 0.0

0.0 1.0 0.0

1.0 1.0 0.0

7 3 1 5

6 2 4 8

6 5 1 2

8 4 3 7

5 6 8 7

4 2 1 3

3.3 Symmetry management in AcouSTO native format

The code AcouSTO can take advantage of the symmetry of the problem to reduce the
numerical effort required for the solution. If a symmetry plane is present, the collocation
points used to evaluate the solution are distributed only along one of the two symmetric
halves of the boundary surface, thus dividing by a factor two the number of equations of
the resulting BEM system. Similarly, in presence of axial symmetry, one can evaluate the
solution only along one half of a meridian circle, and the reduction of the computational
effort depends on the number of “slices” in which the axially-symmetric boundary has
been divided. AcouSTO can take into account symmetry through the value of the integer
variable KSYMMI. This variable controls the ratio between the number of collocation points
NCNTR and the number of elements NELMB according to the following criterion:

NELMB

NCNTR
= 2(KSYMMI) for KSYMMI ≤ 3

NELMB

NCNTR
= KSYMMI for KSYMMI > 3.

In summary, KSYMMI ≤ 3 is associated to the existence of symmetry planes, whereas
KSYMMI > 3 indicates axialsymmetry (see Table 3.3).
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3.3 Symmetry management in AcouSTO native format

KSYMMI kind of symmetry NCNTR/NELMB

0 no symmetries 1

1 one symmetry plane 0.5

2 two symmetry planes 0.25

3 three symmetry planes 0.125

> 3 axial symmetry 1/N

Table 3.1: Relationship between KSYMMI and the ratio NCNTR/NELMB.

The last column of Table 3.3 reports the ratio between the number of collocation points
NCNTR and the number of elements NELMB, in order to give an idea of the reduction of
the computational effort resulting from the use of the symmetry options. Note that the
dimensions of the matrices involved in the final system of equations is NCNTR×NCNTR,
and that the number of integral coefficients that have to be evaluated to build-up these
matrices is equal to 3× NCNTR× NELMB.

Figure 3.4: Control points distributions (green points) for KSYMMI=0, 1, 2, 24 (from
top/left to bottom/right). KSYMMI=1 and 2 are possible because of the even number of
slices used.
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3.4 Gmsh input files

The present version of the code does not have a dedicated geometry pre-processor, so,
particular care must be taken in the construction of the BEM mesh and its topology when
the symmetry option is enabled. The code reads the nodes coordinates and panel topology
from the geometry file, according to the criteria described in Sections 3.1 and B.1, and
simply builds NCNTR collocation points as the centroids of the first NCNTR elements. So,
in the definition of the BEM grid topology, the user must provide the boundary elements
following the instructions in Table 3.3

KSYMMI BEM grid structure

0 No restrictions.

1 the second half of the elements must be obtained by mirroring the first
half with respect to the symmetry plane.

2

the second quarter of elements must be obtained by mirroring the first
quarter w.r.t. the first symmetry plane

and
the second half of elements must be obtained by mirroring the first half
w.r.t. the second symmetry plane

.

3

the second eighth of elements must be obtained by mirroring the first
eighth w.r.t. the first symmetry plane

and
the second quarter of elements must be obtained by mirroring the first
quarter w.r.t. the second symmetry plane

and
the second half of elements must be obtained by mirroring the first half
w.r.t. the third symmetry plane

.

> 3 the k
th

“slice” of the surface must be obtained by rotating the first
NELMB/KSYMMI elements (the first “slice”) by (k−1)2π/KSYMMI radiants.

Table 3.2: BEM grid constraints in presence of symmetry.

Figure 3.4 shows the geometries generated to solve a symmetric problem: the scattering of
the field generated by a monopole source located at (5, 0, 0) by a sphere, discretized with
a parallels/meridians mesh with north and south poles along the x–axis. The number of
meridians sectors is equal to 24. Such a problem presents intrinsic axial symmetry around
the x–axis, but the specific way the BEM mesh was built allows the user to solve the
problem exploiting only the symmetry with respect to the xy-plane and/or xz-plane. The
geometry obtained with the different approaches are depicted in Fig. 3.4.

3.4 Gmsh input files

Version 1.6 of AcouSTO introduces the possibility to read meshes generated with the
public domain grid generator Gmsh (http://geuz.org/gmsh/), developed by Christophe
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3.4 Gmsh input files

Geuzaine and Jean-Francois Remacle. Gmsh is an easy–to–use yet powerful grid generator
with built–in CAD and post–processing capabilities. Although Gmsh has its own format to
export the mesh files (the one that must be used as an input in AcouSTO ), it is compatible
with most of the standard public formats. A detailed documentation, including tutorials
and screencasts can be found on the Gmsh site (http://geuz.org/gmsh/. Here we limit
the description of the use of Gmsh to the specific aim of generating a mesh compatible with
AcouSTO .

First, it must be emphasized that the AcouSTO interface to Gmsh is compatible only with file
format version 2.0, and it has been tested only with Gmsh versions ≥ 2.7. Figure 3.5 shows
a screenshot of the Gmsh GUI. The CAD capabilities built–in the program are sufficient to

Figure 3.5: A screenshot of the Gmsh GUI (v2.8 on MacOSX 10.7.5).

easily generate geometries based on simple primitives using only the GUI. Nevertheless,
the simple syntax of the .geo files and the availability of versatile spline primitives allow
for a straightforward generation of more complex geometry, simply by producing the .geo

file using direct programming in a standard language, like C, Fortran or whatever you like.
Figure 3.6 depicts the complicated geometry of an unconventional aircraft developed at
the Roma Tre University. The points along the sections of wing and fuselage, as well as
along the profile of leading and trailing edges were produced with an external, in–house
written, Fortran code and exported in an ASCII .geo file. The Gmsh spline primitive
was used to build the lines through these points. The surface and the mesh were then
generated in Gmsh (Figs. 3.6 and 3.7) and imported in AcouSTO to estimate the effect of
such a configuration on the scattering of the engine noise components (See Fig. 3.8).

In the next subsection, the procedure to obtain with Gmsh a surface grid compatible with
AcouSTO is described. Note that we will address only the basic process, without entering
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3.4 Gmsh input files

Figure 3.6: Gmsh screenshot of a complex, unconventional aircraft geometry generated by a
simple fortran code using three–dimensional Hermite interpolation of the aircraft sections.

Figure 3.7: Example of the mesh generated with Gmsh on the geometry depicted in Fig.
3.6.

into details for what concern the fine tuning of the local or global properties of the grid.
Gmsh has a lot of possibility to control in detail the quality of the mesh, described clearly
in the documentation available on the developers’ web site.
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3.4 Gmsh input files

Figure 3.8: Example of the AcouSTO result obtained by mirroring the mesh of Fig. 3.7
w.r.t the xz plane (see Section 3.5).

3.4.1 Building a mesh for AcouSTO in Gmsh

Let’s assume that we are interested in the scattering of a sphere within an acoustic environ-
ment having one plane of symmetry passing through the center of the sphere. According
to the AcouSTO management of symmetries with the Gmsh file format (see next Section)
we have to build in Gmsh only a hemisphere. The steps are listed below.

Step 1 - First, add the point where the center of the sphere is located, using the appro-
priate entry of the menu on the left.

Step 2 - Then, using the same tool, add the five end points of three orthogonal diameters
of the sphere parallel to axes of the global frame of reference.
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3.4 Gmsh input files

Step 3 - Select the circle arc primitive in the Add menu and build the eight arcs as in
the figure below. Note that the arcs must be eight to build properly the sectors of
the sphere.

Step 4 - Select the ruled surface primitive from the Add menu and build the four
surfaces as in the figure below.

Step 5 - Visualize the normals to the generated surfaces and verify their orientation.
This is very important because it defines the domain of your acoustic simulation.
The figures below show the case of outward (left) in inward (right) oriented normals.
AcouSTO accepts both the orientation. In the first case, the acoustic domain will be
the exterior unbounded field, whereas in the second, the interior spherical cavity.
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3.4 Gmsh input files

Most likely, not all the surfaces will have the same orientation (it depends on how
the boundaries were built). The easiest way to change the orientation is by editing
the .geo and modify the sign of the surfaces you want to flip in the appropriate
section of the file, as in the examples below

...

Line Loop(20) = {13, 17, 7};

Ruled Surface(21) = {20};

Line Loop(22) = {17, -14, -18};

Ruled Surface(23) = {-22};

Line Loop(24) = {18, -19, -15};

Ruled Surface(25) = {-24};

Line Loop(26) = {19, 7, -16};

Ruled Surface(27) = {-26};

...

Line Loop(20) = {13, 17, 7};

Ruled Surface(21) = {-20};

Line Loop(22) = {17, -14, -18};

Ruled Surface(23) = {22};

Line Loop(24) = {18, -19, -15};

Ruled Surface(25) = {24};

Line Loop(26) = {19, 7, -16};

Ruled Surface(27) = {26};

Outward normals Inward normals

Step 6 - Once that you have all the normals properly oriented, you can generate the
mesh by first clicking the 1D entry of the Mesh menu and then the 2D entry. The
mesh can be refined by splitting, simply clicking on the dedicated menu item as
many times as you want.

Step 7 - When you are happy with your mesh, select Save as... from the File menu
and choose the .msh format. In the dialog that appears after the filename and
location selection you must choose Version 2 ASCII as format, and (just to be
sure, but this is not mandatory) check the Save all check–box.
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3.4 Gmsh input files

Now, you are ready to import your Gmsh grid in AcouSTO , follow it the instructions given
in Section 3.5.

The above procedure was described referring to the Gmsh GUI menus for the sake of
simplicity. Nevertheless, after a brief training with Gmsh you will probably prefer to edit
directly the .geo ASCII file. This is actually the way we used to produce all the meshes
we are using.

It must be pointed out that Gmsh and AcouSTO use a different numbering system for the
panels vertices, as well as a slightly different convention for the local coordinates. Figure
3.9 shows these differences for triangular and quadrilateral panels (the only accepted by
AcouSTO ). This aspect is not crucial to run the code, but could be of interest to people
interested in modifying the sources. The only thing that must be kept in mind is that
AcouSTO uses a 4–vertices topology (with 2 vertices coincident) also for triangular panels.

Figure 3.9: Gmsh (left) and AcouSTO (right) panel vertices numbering and local coordinates.
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3.5 Symmetry management in Gmsh mesh format

3.5 Symmetry management in Gmsh mesh format

Of course, AcouSTO can take advantage of the symmetry of the problem also in the case
of meshes generated by Gmsh . Nevertheless, the possibility to work with unstructured
meshes, generated by the external software using specific partitioning algorithms of the
manifold, makes impossible the approach adopted for meshes in native format (see Section
3.3). For this reason, a different approach to symmetry is used with Gmsh files. The
fundamental differences are:

• The user must provide to AcouSTO only the un–symmetrized portion of the domain
boundary AcouSTO will generate the complete symmetrized geometry according to
the symmetrization directives specified in the config file.

• With Gmsh files, the domain can have only one plane of symmetry or has to be axially
symmetric.

As for the AcouSTO native format, the parameter controlling the existence of symmetries
is KSYMMI available in the runinfo module. The symmetrization directives are specified
giving in input the vector symvec and the reference point refpoint in a block of type
gmsh (see Section A.2). Their meaning deepens on the context, and is explained in Table
3.5.

KSYMMI NELMB/NCNTR Meaning of input variables

0 1 not active

1 2 symvec is the vector orthogonal to the symme-
try plane passing through refpoint (see Figures
3.10)

2 not active program stops after an error message

3 not active program stops after an error message

≥ 4 KSYMMY the vector symvec applied on refpoint fixes the
symmetry axis (see Figures 3.13)

Table 3.3: Symmetry management with Gmsh mesh files

The relevant sections of the config files related to the examples depicted in Figures ?? and
3.13 are given in Table 3.4.

Note that in presence of multiple bodies the use of symmetries makes
the format of the .vtk and .msh fail, but not the solution. So, for your
visualization you must use the .out files

.
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3.6 Field microphones in Gmsh mesh format

Table 3.4: Relevant sections of the config files for the two examples used.

Wing Fan + nacelle

...

runinfo={

active = 1;

title = "Wing_Sym";

owner = "Umberto Iemma";

ksymmi=1;

krow =-1;

vsound =340.0;

};

wing={

type="gmsh";

filename="wing.msh";

symvec={x=0.;y=1.;z=0.;};

refpoint={x=0.;y=0.;z=-1.;};

};

...

runinfo={

active = 1;

title = "Nacelle_Axial";

owner = "Umberto Iemma";

ksymmi=24;

krow =-1;

vsound =340.0;

};

nacelle={

type="gmsh";

filename="fan_nacelle.msh";

symvec={x=0.;y=0.;z=1.;};

refpoint={x=0.;y=0.;z=0.;};

};

Figure 3.10: Un-symmetrized mesh of the wing–like geometry as generated in Gmsh (left)
and complete geometry after AcouSTO symmetrization. The vector symvec (red) is orthog-
onal to the symmetry plane (gray) passing through refpoint (green). Collocation points
(black dots) appear only on the original portion of the geometry.

3.6 Field microphones in Gmsh mesh format

Starting from AcouSTO v1.6, the field microphones can be provided in form of Gmsh .msh

format. This possibility is strongly encouraged, when the solution on a 2D manifold 1

in the field is needed. Indeed, the use of Gmsh allows for the generation of much more

1The possibility to distribute the microphones on a 3D subdomain is not available yet and wil be
included in a future release.
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3.6 Field microphones in Gmsh mesh format

Figure 3.11: Gmsh mesh of one fan blade and a sector of nacelle corresponding to π/12
radians (left) and the complete mesh of the fan–nacelle geometry after AcouSTO axial
symmetrization. The vector symvec (red) through refpoint (green) fixes the axis of the
nacelle. Collocation points (red dots) appear only on the original portion of the geometry.

complex microphone geometries in a simple reliable way. In addition, the post-processing
of the solution in the field yields much better results, thanks to the structured topology
of the field monitoring points (see Section 4.8). The procedure to generate a microphone
input file in Gmsh is very simple.

Step 1 - First generate in Gmsh the surfaces where you want to distribute microphones.

Step 2 - Generate a physical group with all these surfaces (optionally, you can edit the
.geo file to associate a custom tag to it), and mesh it using the standard procedure.

Step 3 - Export the mesh, leaving unchecked the option Save all (ignore physical

groups).

Figure 3.12: Building a Gmsh microphones mesh (Steps 1-3, left to right).

If you provide the file so obtained to AcouSTO , it recognize automatically the Gmsh format
and reads mics and topology. Note the with a Gmsh microphone file you don’t need
to provide NMICS in the config file (it is read from the file). Figure ?? shows the
solution visualization on the Gmsh microphones mesh using a VTK viewer and the post–
processing features of Gmsh itself.
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3.6 Field microphones in Gmsh mesh format

Figure 3.13: Visualization of solution on a Gmsh microphone mesh with a VTK viewer (left)
and with Gmsh .
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Analysis setup, solution and post-
processing

CHAPTER 4

This is where you can
finally get some number
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4.1 The incident field

In this chapter we outline the steps needed to setup the code solver, as well as the funda-
mental post-processing techniques available to visualize the results. One of the key points
is the proper definition of the boundary conditions associated with the problem. So, we
will start with Section 4.2, where an accurate (even if not exhaustive) description of the
theoretical formulation used to treat this specific issue is presented. Then, in Section 4.1
the definition of the acoustic properties of the boundary is outlined. Section 4.4 deals
with the proper setup of the memory management variable, extremely useful to identify
a trade-off between memory allocation and access to disk. Finally, Section 4.8 describes
how to analyze the produced results using only freely available tools.

4.1 The incident field

With “acoustic environment” we mean all the parameters related to the acoustic properties
of the boundary (wall impedance and radiating panels), the elementary sources present
in the domain, and the primary, or incident, acoustic field. The setup of these properties
can be implemented through dedicated variables in the configuration file, and the corre-
sponding data files. In this section we focus the attention on the definition of the sources
and the incident field. The treatment of the boundary conditions deserves a more detailed
discussion which will be presented in the following sections.

The current version od AcouSTO can handle only isolated monopoles and incoming plane
waves. This limitation will be removed soon, including the possibility to consider isolated
dipoles and quadrupoles, as well as incident fields calculated by external tools and provided
in form of data files.

For the moment, there here are no limits in the number of monopoles and/or incoming
plane waves. The relevant variables are presented in Tables 4.1 and 4.2.

Table 4.1: Point sources (monopoles)

variable config block meaning

nsourc modsol number of monopoles in the field

sources file modsol name of the file with the locations and in-
tensities of the monopoles

When one of the above dimensions is not zero, the corresponding input files must be
provided using the format specifications given in Section B.2. The content of each of the
above files is ignored when the corresponding dimension is set to zero.

AcouSTO can handle two different formulations of the problem. In the first one (formulation
A in the following) the solution is found for the total field ϕ̃. It is convenient when acoustic
sources are present in the field, provided that the associated primary field could be easily
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4.2 General formulation for the boundary conditions

Table 4.2: Plane waves

variable config block meaning

nplanw modsol number of incoming plane waves

planw file modsol name of the file containing the wave vector
of the incoming waves

calculated (see Section 4.2). In such a case, the integral form of the problem is derived
directly from the non–homogeneous wave equation, and is written in terms of the to-
tal acoustic perturbation ϕ̃(x, κ) (formulation A). In the second approach (formulation
B) the problem is solved by calculating the scattering component of the acoustic field,
ϕ̃ sc . This is applicable when the primary field is directly known (e.g., from an impinging
wave or from external calculations). The equation is recast in form of homogeneous wave
equation for the scattered field, and the effect of the incident field is given through the
boundary conditions.

4.2 General formulation for the boundary conditions

The boundary conditions associated to the wave propagation within the domain V can
be derived from the relationship existing on the boundary between the unknown function
and its normal derivative, i.e.,

γ(x, κ) ϕ̃(x, κ) + λ(x, κ)
∂ϕ̃(x, κ)

∂n
= f̃(x, κ) + g̃(κ) · n(x), for x ∈ ∂V (4.1)

where γ, λ, and f are known complex functions of position and frequency, whereas g̃ is a
vector constant in space (possibly varying only with frequency). Dirichlet–, Neumann–, or
Robin– type boundary conditions can be easily derived from Eq. 4.1 giving the appropriate
form to γ, λ, f and g. The discrete form of Eq. 4.1 is the following

Γ ϕ̃+ Λ χ̃ = f̃ + ã (4.2)

where f̃ and ã are the column vectors collecting the values of f̃ and g̃ ·n at the collocation
points, whereas Γ and Λ are diagonal matrices collecting the values of the γ and λ functions
at the collocation points

Γ =


γ(x1) 0 0 0

0 γ(x2) 0 0

0 0
. . . 0

0 0 0 γ(xN )

 , Λ =


λ(x1) 0 0 0

0 λ(x2) 0 0

0 0
. . . 0

0 0 0 λ(xN )

 (4.3)
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It is important to clarify what do we mean in the following with
Neumann– and Dirichlet–type boundary conditions.
When a linear combination of ϕ̃ and χ̃ is known on ∂V (i.e., when both
λ and γ are different from zero) we are in presence of Robin boundary
conditions. In the following, we define Neumann–type boundary condi-
tions the expression obtained using Eq. 4.1 to write χ̃ as a function of ϕ̃.
Conversely, when Eq. 4.1 is used to express ϕ̃ as a function of χ̃ we talk
about Dirichlet–type conditions.
This is only a naming convention introduced to distinguish between the
two different numerical approaches used and has nothing to do with the
rigorous definition of Dirichlet conditions (λ ≡ 0) and Neumann condi-
tions (γ ≡ 0).

4.2.1 Neumann–type boundary conditions

As pointed out at the end of the previous section, we talk about Neumann–type boundary
conditions when Eq. 4.1 is used to express ∂ϕ̃(x, κ)/∂n as a function of ϕ̃. If γ = 0
this formulation yields pure Neumann conditions (i.e., normal derivative known on the
boundary). In such a case, Eq. 4.2 is rewritten as

χ̃ = Λ−1
(

f̃ + ã
)
− Λ−1Γ ϕ̃ (4.4)

The resulting solving system of equations for ϕ̃ for the two formulation is derived in the
following.

Formulation A

In this first approach, the integral formulation is written in terms of total acoustic pertur-
bation ϕ̃(x, κ), and derived from the non-homogeneous wave equation 2.1, to yield

E(y) ϕ̃(y) =

∮
S

(
G0

∂ϕ̃

∂n
− ϕ̃∂G0

∂n
+ s ϕ̃G0

∂θ

∂n

)
e
−s θ

dS(x) + IV(y, κ) (4.5)

where

IV(y, κ) =

∫
V

G0 q̃ e
−s θ

dV(x). (4.6)

and with the boundary conditions given by Eq. 4.1. In general, the volume integral arising
from the presence of the acoustic forcing term cannot be calculated in closed form, and
its numerical treatment is not possible. On the other hand, for certain types of acoustic

41 c© U. Iemma & V. Marchese



4.2 General formulation for the boundary conditions

sources, the value of IV(y, κ) can be calculated exactly (see Section 4.2.1), and the matrix
form of the BEM system is

1

2
ϕ̃ = B χ̃+ (C + sD) ϕ̃+ q̃ (4.7)

where q̃ is the [M × 1] column vector collecting the value of the acoustic field induced by
the source at the collocation points, and χ̃ can be derived from Eq. 4.4 (see Section 4.1),
to yied

1

2
ϕ̃ = B

[
Λ−1

(
f̃ + ã

)
− Λ−1Γ ϕ̃

]
+ (C + sD) ϕ̃+ q̃. (4.8)

Using the notation introduced in Section 2.1.2

ϕ̃ =
(
Y + BΛ−1Γ

)−1 [
BΛ−1

(
f̃ + ã

)
+ q̃
]

(4.9)

If the integral IV can be calculated in some way (analytically or numerically), then the
vector q̃ is known. The present version of AcouSTO can use the formulation A only if
monopole sources are present. Other field sources will be included in the forthcoming
versions of the code.

Formulation B

In most of the realistic applications, the integral IV cannot be easily calculated, and
formulation A is not a feasible approach to the problem. In such a case, it is convenient
to decompose the acoustic potential in the contributions of the incident (or primary) and
scattered fields, ϕ̃ = ϕ̃ in + ϕ̃ sc . The problem can be reduced to an integral formulation for
the scattered field of the form

E(y) ϕ̃ sc(y) =

∮
S

(
G0χ̃ sc − ϕ̃ sc

∂G0

∂n
+ s ϕ̃ scG0

∂θ

∂n

)
e
−s θ

dS(x) (4.10)

The effect of the field sources are included into χ̃ sc by decomposing Eq. 4.4 into its incident
and scattering components

χ̃
sc

= Λ−1
(

f̃ + ã
)
− Λ−1Γ ϕ̃

in
− Λ−1Γ ϕ̃

sc
− χ̃

in
(4.11)

Note that the incident field is the acoustic field induced by the field sources: it represents
the acoustic field that would be present if all the scattering obstacles were absent. Thus,
it should be known in advance in order to make the problem solvable. The final form of
the solving system is

ϕ̃
sc

=
(
Y + BΛ−1Γ

)−1 [
BΛ−1

(
f̃ + ã

)
− BΛ−1Γ ϕ̃

in
− Bχ̃

in

]
. (4.12)
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Example: Scattering of the field generated by a point source by a sound hard
surface

In order to better clarify the equivalence of the two approaches, and to make some consid-
eration about their numerical advantages and drawbacks, let’s consider the simple example
of a single point source in xs, radiating into a field where an acoustically impermeable
surface is present. The boundary condition associated to such a surface is

∂ϕ̃

∂n
= 0 (4.13)

In this case, γ = 0, λ = 1, f̃ = 0, and g = 0 ∀x ∈ S, and thus Γ = 0 and Λ = I.
Furthermore, being q(x, κ) = q̂(κ) δ(x− xs), the field integral can be solved analytically

IV(y, κ) = q̂(κ) G0(y,xs) e
−s θs

, (4.14)

with θs = |xs − y|/c0 . As a consequence, the entries of the vectors q̃, ϕ̃
in

and χ̃
in

can be

evaluated analytically as

q̃j = q̂(κ) G0(xj ,xs) e
−s θsj

, θsj =
|xs − xj |

c0

, for j = 1, ..., N. (4.15)

ϕ̃
in

= q̃ (4.16)

[χ̃
in
]j = q̂(κ) ∇

[
G0(xj ,xs) e

−s θsj
]
· nj (4.17)

The form of the final system of equations for the two approaches is

• Formulation A:
ϕ̃ = Y−1 q̃ (4.18)

• Formulation B:
ϕ̃ = ϕ̃

sc
+ ϕ̃

in
= −Y−1 B χ̃

in
+ ϕ̃

in
. (4.19)

Formulation B requires the evaluation of the incident field and its normal derivative at
the collocation points, whereas formulation A requires only the evaluation of q̃, which
acts directly as the known term of the system. Considering that q̃ ≡ ϕ̃

in
, the formulation

A is clearly the most convenient in this case. Indeed, for the same discretization of the
boundary, formulation A yields to a system having a known term, q̃, analytically evaluated.
On the contrary, in the formulation B the known term of the system is B χ̃

in
, which is a

numerical approximation of the source integral associated to the normal derivative of the
scattered field on S, whose accuracy depends on the mesh.

4.2.2 Dirichlet–type boundary conditions

When is ϕ̃ the known part of the Cauchy data of the BVP, Eq. 4.2 must be rewritten in
the form
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ϕ̃ = Γ−1
(

f̃ + ã
)
− Γ−1Λ χ̃ (4.20)

The resulting solving system of equations for ϕ̃ for the two formulation is derived in the
following.

Formulation A

Equation 4.20 can be combined with 4.7 to obtain a system of equations for χ̃, which now
is the unknown part of the Cauchy set. Using the same symbols introduced in Section
2.1.2, it can be easily shown that the result is

χ̃ =
(
B + YΓ−1Λ

)−1 [
YΓ−1

(
f̃ + ã

)
− q̃
]

(4.21)

Again, if the integral IV can be calculated in some way (analytically or numerically), then
the vector q̃ is known.

Formulation B

Using the same approach as in Section 4.2.1, the effect of the field sources are included
into ϕ̃ sc by decomposing Eq. 4.20 into its incident and scattering components

ϕ̃
sc

= Γ−1
(

f̃ + ã
)
− Γ−1Λ χ̃

sc
− Γ−1Λ χ̃

in
− ϕ̃

in
(4.22)

Also in this case, the incident field must be known to solve the problem as

χ̃
sc

=
(
B + YΓ−1Λ

)−1 [
YΓ−1

(
f̃ + ã

)
− YΓ−1Λ χ̃

in
− Y ϕ̃

in

]
. (4.23)

Example: Scattering of the field generated by a point source by a sound–soft
surface

Now, let’s consider the simple example of a single point source in xs, radiating into a
field where a sound–soft surface is present. The boundary condition associated to such a
surface is

ϕ̃ = 0 (4.24)

In this case, γ = 1, λ = 0, f̃ = 0, and g = 0 ∀x ∈ S, and thus Γ = I and Λ = 0.As in the
example 4.2.1, the field integral gives

IV(y, κ) = q̂(κ) G0(y,xs) e
−s θs

, (4.25)
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with θs = |xs − y|/c0 . As a consequence, the entries of the vector q̃ can be evaluated as

q̃j = q̂(κ) G0(xj ,xs) e
−s θsj

, θsj =
|xs − xj |

c0

, for j = 1, ..., N. (4.26)

The form of the final system of equations for the two approaches is

• Formulation A:
χ̃ = B−1 q̃ (4.27)

• Formulation B:
χ̃ = χ̃

sc
+ χ̃

in
= −B−1Y ϕ̃

in
+ χ̃

in
. (4.28)

Also in this case, and for the same reasons explained at the end of Section 4.2.1, formulation
A is clearly convenient.

4.2.3 Wall impedance

AcouSTO can take into account impedent walls by providing, with the format specified in
Section 4.1, the local value of the complex impedance,

Z(x, s) = R(x, s) + j X (x, s), x ∈ ∂V, (4.29)

beingR and X are the resistive and reactive parts, respectively. The wall acoustic mobility
(admittance) is A = 1/Z. It is possible to associate a single complex value of Z to the
whole boundary, or to specify the value of Z for a subset of panels (see Section 4.1). The
influence of Z on the solution is consistent with the assumption of a “locally reacting”
surface.

It is worth noting that the acoustic properties of a material are often defined in the
literature in terms of its “reflection coefficient” R, which is a complex quantity related to
Z through the formula (see, e.g., [1])

Z(x, s) cos(θI) = ρ c
1 +R(x, s)

1−R(x, s)
(4.30)

where the angle θI is the incidence angle of the incoming (planar) wave front, and is
equal to zero when the wave front impinges normally to the boundary, i.e., when for the
wave unit vector holds ŵ = −n̂. Note also that the reflection coefficient is related to the
“absorption coefficient” α through

α = 1− |R(x, s)|2 (4.31)

which is a real number widely used in engineering applications.
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Starting from the physical definition of Z

Z =
p̃

v · n̂ in

(4.32)

(where n̂ in is the unit normal pointing into the wall) and making use of the linearized
Bernoulli’s theorem, p̃ = −ρ s ϕ̃, Eq. 4.1 can be specialized for the case of a locally
impedant wall. Considering that

v · n̂ in = −v · n̂ = −∂ϕ̃
∂n

(4.33)

one obtains
∂ϕ̃

∂n
− ρ s

Z
ϕ̃ = 0, (4.34)

which corresponds to γ = −ρ s/Z, λ = 1, f = 0, and g = 0 in Eq. 4.1. As a consequence,
Λ = I and

Γ = −ρ s


1/Z(x1) 0 0 0

0 1/Z(x2) 0 0

0 0
. . . 0

0 0 0 1/Z(xN )

 (4.35)

= −ρ s


A(x1) 0 0 0

0 A(x2) 0 0

0 0
. . . 0

0 0 0 A(xN )

 (4.36)

4.3 Setup of boundary conditions

AcouSTO gives to the user full control of the boundary conditions to implement the general
formulation presented so far. The user can provide arbitrary values to the functions
γ(x, κ), λ(x, κ), and f̃(x, κ), and to the vector g(κ) using three different approaches for
both Neumann– or Dirichlet–type formulations.

The input variables controlling this feature are dirneu and custombc, in the modsol

configuration block. In addition, knw controls the formulation used (A or B) for the

46 c© U. Iemma & V. Marchese



4.3 Setup of boundary conditions

primary field. The values these variables can assume are:

dirneu =

{
1 Dirichlet–type boundary conditions.

2 Neumann–type boundary conditions. This is the default.

knw =

{
1 Formualtion A for source terms. This is the default.

2 Formualtion B for source terms.

custombc =


0 Legacy format (see Section 4.3.1). This is the default.

1 Custom b.c. using AcouSTO files (Section 4.3.2).

2 Custom b.c. using Gmsh file (Section 4.3.3).

The three options for custombc refer to the three different approaches to provide the
values of boundary properties, which are described in the following sections.

The use of custombc = 1/2 is strongly encouraged. The possibility to use
the legacy boundary conditions input scheme will be removed in one of
the future releases.

4.3.1 custombc =0. Legacy format for impedent and radiant panels

The input structure presented in Section 4.3 can be used to describe any type of boundary
conditions. The only drawback is that the acousto–mechanical properties of the boundary
could appear somehow hidden by the general formulation adopted (see Section 4.2.3).

Although the use of the scheme presented in Section 4.3 is strongly encouraged, starting
from v1.6, AcouSTO retains the possibility to explicitly define the acoustic impedance of
the boundary (or of part of it) and/or the presence of radiant panels by listing them in
files with specified names with a format defined in Section B.2.2. The input variables
dedicated to this are presented in Tables 4.3 and 4.4. If the variable nimped and nradian

are negative, then the surface is assumed to be uniformly impedent and/or radiant. In this
case the values of the impedance and the radiation amplitude are rerad from the config
file (see Section A.2).

4.3.2 custombc =1. The AcouSTO boundary condition files

When this option is activated, it is also necessary to provide the names of the files collecting
the values of the boundary conditions functions by including the following entries in the
modsol block
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Table 4.3: Impedent panels

variable config block meaning

nimped modsol number of impedent panels (nimped< 0
implies a uniform radiation for the whole
boundary)

imped file modsol name of the file containing the indices and
the complex impedance of the impedent
panels

Table 4.4: Radiant panels

variable config block meaning

nradian modsol number of radiant panels (nradian< 0
implies a uniform radiation for the whole
boundary)

radiants file modsol name of the file containing the indices of
the radiant panels and the complex ampli-
tude of their motion

bc lambda file = "name of lambda file"

bc gamma file = "name of gamma file"

bc func file = "name of func file"

bc g file = "name of gvec file"

Note that the current version of the code can handle only a g vector constant in space.
Thus, the bc g file must contain only one line with the format described in Section B.2
(if the file is longer, then only the first line is read).

Note that the diagonal matrices Γ and Λ used in the previous Sections were introduced for
notational simplicity and are not actually built by the code. Thus, no memory is waisted
to store all those zeroes.

Since all the functions in Eq. 4.1 depend on frequency, you may want to specify different
input files in case of a multi-frequency analysis. To do this, you have to comply to a simple
naming convention. The name of each file must include an integer number representing
the frequency index the file refers to, and the entries of the configuration file must have a
%d where the frequency index is expected. For example, let’s assume that we want analyze
three frequency, and that the files containing the function λ are lambda 1, lambda 2,
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lambda 3. The correct configuration entry is

bc lambda file = "lambda %d"

The file format is specified in Section B.2. Note that, although constant in space, g can
vary with frequency.

Note that AcouSTO doesn’t check for the values of γ and λ to be compatible
with the user selection of Neumann or Dirichlet conditions.
The coherence of the input is responsibility of the user. Specifically, the following
conditions must be satisfied to avoid inconsistent results

∀ x ∈ ∂V

{
λ(x, κ) 6= 0 Neumann–type

γ(x, κ) 6= 0 Dirichlet–type
(4.37)

4.3.3 custombc =2. Boundary conditions from Gmsh mesh files

AcouSTO 2.0 introduces the possibility to define custom boundary conditions using Gmsh .
This feature enables an easy and powerful way to prepare the input files in presence of com-
plex boundaries which exhibit non uniform acoustic properties. Using this input scheme
for the acoustic properties of the boundary, the bc * files are generated by AcouSTO on
the basis of the entries found in the configuration file. Indeed, the input schemes is based
on the definition of physical groups in Gmsh . Each physical groups must be associated to
a particular acoustic response of the boundary. The acoustic properties of each physical
group have to be defined in the configuration file by setting a specific value for γ, λ, and
f to the tag associated to the physical groups (see Gmsh manual for tags definition). To
this aim, the physical groups are listed within the gmshbc list as

gmshbc = ["a phys group", "another phys group", ...];

For each name in the list, the corresponding input block must be present, with the syntax

a_phys_group ={

tag = <tag of physical group >;

re_lambda = real part of λ;
im_lambda = imaginary part of λ;
re_gamma = real part of γ;
im_gamma = imaginary part of γ;
re_f = real part of f ;
im_f = imaginary part of f ;

};
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Once that the properties associated to each physical group are read, AcouSTO produces
the boundary conditions files according to the fixed naming scheme

bc lambda file = "exported gmshbc lambda"

bc gamma file = "exported gmshbc gamma"

bc func file = "exported gmshbc func"

In case of boundary properties depending on frequency, the names of physical group must
include %d at the end. The number of boundary properties for each physical group must
be equal to the number of frequencies for all the physical groups. For example, the correct
configuration file section for two groups and two frequencies must be as follows:

gmshbc = [" a_phys_group%d", "another_phys_group%d"];

a_phys_group0 ={

tag = <tag of physical group >;

re_lambda = real part of λ;
im_lambda = imaginary part of λ;
re_gamma = real part of γ;
im_gamma = imaginary part of γ;
re_f = real part of f ;
im_f = imaginary part of f ;
};

a_phys_group1 ={

tag = <tag of physical group >;

re_lambda = real part of λ;
im_lambda = imaginary part of λ;
re_gamma = real part of γ;
im_gamma = imaginary part of γ;
re_f = real part of f ;
im_f = imaginary part of f ;
};

another_phys_group0 ={

tag = <tag of physical group >;

re_lambda = real part of λ;
im_lambda = imaginary part of λ;
re_gamma = real part of γ;
im_gamma = imaginary part of γ;
re_f = real part of f ;
im_f = imaginary part of f ;
};

another_phys_group1 ={

tag = <tag of physical group >;

re_lambda = real part of λ;
im_lambda = imaginary part of λ;
re_gamma = real part of γ;
im_gamma = imaginary part of γ;
re_f = real part of f ;
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im_f = imaginary part of f ;
};

In such a case, the exported files will be named as

exported_gmshbc_lambda1

exported_gmshbc_lambda2

exported_gmshbc_gamma1

exported_gmshbc_gamma2

exported_gmshbc_f1

exported_gmshbc_f2

The input of vector g remans the same as for custombc = 1 (see Section 4.3.2). The use
of this input method makes the input files much more compact and readable, being now
the attention focused on boundary’s subdomains, rather than on single elements. Details
on this input method are given in Section B.2.3 and in the dedicated tutorial.

4.4 Memory management

4.4.1 The KROW flag

When dealing with very large problems, a large amount of memory is required to complete
the analysis. Usually, when a single process takes control of a large part of the available
RAM, the performances of the machine dramatically drops down. As a consequence, the
calculation time increases, as well as the risk of critical errors and machine hang-ups.
To avoid this situation (or, at least, to move it further away) the code includes a simple
mechanism of memory management.

The integral coefficients, once evaluated by the dedicated module, are stored on unfor-
matted files. When the BEM matrices need to be assembled, the coefficients are retrieved
from the disk files, and stored in RAM in form of three-dimensional arrays. The input
variable KROW controls the dimensions of these arrays, by controlling the number of
matrix rows to be loaded at a time. The way it works is described in Table 4.5.

Value No. of matrix rows loaded in RAM

1 ≤ KROW < NCNTR KROW

KROW ≤ 0 NCNTR (full problem)

KROW ≥ NCNTR NCNTR (full problem)

Table 4.5: Use of the variable KROW to control memory allocation.
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From Table 4.5, we see that the user can choose the amount of matrix rows to load in
RAM from 1 up to the entire problem. The optimal choice strongly depends on the
characteristics of the system that you are using. When setting the KROW value, keep in
mind that a reduction in memory allocation results in a higher number of access to disk.
The more appropriate trade-off is a matter of trial and errors.

Versions of AcouSTO ≥ 1.2 accept the runtime option -m to display an
estimate of the memory required by the run.

4.4.2 Stored or recalculated coefficients

Version 1.3-beta includes a new feature to save memory space. Up to version 1.2-beta, the
integral coefficients representing the influence of each panel onto collocation points and
microphones were evaluated in the dedicated module, and kept in memory as very large
arrays. For intensive simulations, these arrays can be really huge and rapidly saturate the
RAM even for the most powerful clusters.

From version 1.3-beta, by default the integral coefficients are evaluated at the moment of
their use and discarded. This approach results in a significant reduction of the memory
allocated, with a slight reduction of peak performances in all those cases where the same
coefficient is used more than once to complete the calculation (not very frequent, indeed).

In any case, the possibility to store the coefficients into arrays is still available, being this
possibility useful during development and debugging. Setting

pre calculated coefs=1

in the configuration file activates this possibility (see Chapter A for details).

Note that the variable KROW has (obviously) no effect when the coefficients are
not stored in RAM.

4.5 MPI and ScaLAPACK

AcouSTO uses the MPI-2 communication protocol to run in parallel on clusters of comput-
ers. In this section, the basic criteria underlying the parallel implementation scheme are
briefly described. It should be emphasized that the method we adopted is very simple
and preliminary. Thus, the user should not expect top performances and high scalability.
The parallel implementation will be improved in the future versions of the code (of course,
external contributions are very welcome).
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From the point of view of the distribution of computational load, the algorithm can be
divided into three parts: i) the evaluation of the integral coefficients, Eq. 2.7; ii) the
solution of the linear system, Eq. 2.8; iii) the assembly of the solution in the field,
Eq.2.11. The code includes direct calls to the MPI functions to distribute the evaluation
of the integral coefficients among the nodes. This part of the algorithm is embarrassingly
parallel, i.e., can be divided into subtasks that do not need to communicate with each
other. In the present version of the code, the subtasks are generated by equally partitioning
the total work into a number of subtasks equal to the number of MPI processes (SPMD
pattern). A more efficient, especially on heterogenous clusters, Master/Worker version is
under development. In figure 4.2 we have reported an activity diagram to show the major
blocks of the algorithm. In the configuration file (described in Appendix A) there are 4
parameters related to the parallelization of the algorithm:

• nprows= Pr number of process rows in the process grid

• npcols= Pc number of process columns in the process grid

• row blocking factor = MB row block size

• col blocking factor = NB column block size

The ScaLAPACK library expects the processes to be organized in a process grid. In order
to make dense matrix computations as efficient as possible, ScaLAPACK uses a data layout
called 2–dimensional block cyclic distribution1. In short the P processes of our cluster are
arranged in a PrX Pc rectangular array of processes. The rows and the columns of the
process are divided in groups of size MB and NB respectively and distributed in a cyclic
manner (fig.4.1). The data contained at the index (j, k) of the matrix is thus stored in
process ((j−1)/MBmodPr, (k−1)/NBmodPc). The right choice of the rows and column
block size is hence important to ensure a well balanced distribution of the data over the

Figure 4.1: ScaLAPACK process grid.

processes in the grid. The ScaLAPACK Users’ guide suggests that, for the routines called

1To better understand the effect of these parameters we address the reader to the ScaLAPACK Users’
Guide, available at http://www.netlib.org/scalapack/slug/index.html
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by AcouSTO , a good shape for the grid could be, for square matrices, Pr � Pc with row
and column block size = 64. Anyway, we suggest you check the literature to optimize
the parameters of the ScaLAPACK routines involved or, in alternative, try changing the
parameters to achieve the best performance.

4.6 Choose the solver

Version 1.3-beta introduces the possibility to choose the solver of the linear system. Up to
version 1.2-beta, the solution is obtained through a pseudoinverse-based solver, available
in the ScaLAPACK libraries. This option is the default choice also in version 1.3-beta,
but now an iterative GMRES solver can be used on demand.

The reason of such an option stems from the higher parallel performance of this kind of
solvers for dense matrices (as the ones we deal with). In addition, the number of operation
required is proportional to N2Nit, where Nit is the number of iteration to achieve the
convergence.

The solver choice is controlled by the input variable solver. Specifically

solver="GMRES"; activates the iterative solver,

whereas

solver="PSEUDOINV"; switches to the ScaLAPACK solver.

Please note that the GMRES solver has been written from scratch, and is still under
validation. A detailed description of the algorithm used will be included soon in this
manual.

4.7 Run the code

Once that the the input data structure has been completed according to the instructions
given in the previous sections, the code can be run using the mpirun command. Here we
assume that the MPI environment is properly set up, and that the user has complete access
to all the nodes involved in the calculation.
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Figure 4.2: Activity diagram of AcouSTO .
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4.7 Run the code

4.7.1 Running on a single node

In order to run the code on a single computer, even if it doesn’t make much sense other
than for testing purposes, you can issue the command:

mpirun -np <n.proc> acousto -f <config.file>

where <n.proc> is the number of processes, which depends on the grid size you declared
in the configuration file, and <config.file> is the configuration file described in Ap-
pendix A which must be on the master node.

4.7.2 Running in a distributed environment

In this section we assume you have a cluster of n nodes in which AcouSTO has been installed
and can be found in the run path of each node and that the proper remote execution
permissions have been correctly set up. There are many available options for the mpirun

command line and there are many ways to run the code on a distributed environment; we
will give here some basic instructions but please refer to the mpirun documentation for
further details. In order to run AcouSTO on your cluster you have multiple choices, the
two most common ways of running an �MPI code are described in the following sections.

4.7.3 Running with one process on each node

This is the easiest way to launch the code. Just give the command

mpirun -np <n.nodes>\

-host <node 1>,<node 2>,...,<node n>\

acousto\

-f <config.file>

and one AcouSTO process will start on each node defined with the option -host.

4.7.4 Running with different number of processes on each node

You can also choose to run AcouSTO starting more than one process on each node. The
cleanest way to do this is with the help of a hostfile in which you can declare the nodes
and the “slots” for each node. If you want, for instance, to run AcouSTO with 2 processes on
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node 1.acousto.org, 1 process on node 2.acousto.org and 4 processes on node n.acousto.org
you can write a hostfile with the following content:

node_1.acousto.org slots=2

node_2.acousto.org slots=1

...

node_n.acousto.org slots=4

Now we can pass the above file to the mpirun executable:

mpirun -np <n.proc> --hostfile <hostfile.name> acousto -f <config.file>

The number of processes specified with the option -np can be omitted and, in this case,
mpirun will launch ”slots“ processes on each node as defined in the hostfile2

4.8 Data post-processing

Once that the solution is completed without errors, the results can be visualized in sev-
eral ways, depending on the specific application at hand, and on the user’s needs and
preferences. A huge amount of reliable public domain software is available for scientific
visualization. In order to make possible an easy visualization of the solution also to the
users less familiar with this kind of stuff, AcouSTO provides the solution in different formats
(details in Appendix B), suitable for an easy post–processing using the most widely used
codes for scientific visualization. Specifically, the solution on the body surface and at the
microphones is written into

• plain text files containing space-separated columns (extension *.out);

• ASCII files in “legacy” VTK format (extension *.vtk, see http://www.vtk.org) for
the field on the boundary and for the pressure at the microphones;

• ASCII files in Gmsh v2.2 format (extension *.msh, see http://geuz.org/gmsh/) for
the field on the boundary and for the pressure at the microphones (only from
AcouSTO v1.6 on) ;

• plain text files in VRML2 format to visualize the geometry of the domain.

2You can also limit the number of maximum processes on each node with the option max slots of the
hostfile. Please refer to the man page of mpirun for further details.
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All these files follow a naming convention useful to easily retrieve your results.3 The
naming scheme and the files content is given in Table 4.6. Details about the data format
is given in Appendix B. In Table 4.6, <RunName> is the name of the current run, as

Table 4.6: Naming convention for the output files.

Name Content

<RunName>-surface.wrl domain boundary in VRML2 format

<RunName>-controls.wrl control points location in VRML2 format

<RunName>-mics.wrl microphones location in VRML2 format

<RunName>-chief.wrl chief points location in VRML2 format

<RunName>-sources.wrl point sources location in VRML2 format

<RunName>-radiants.wrl radiant panels location in VRML2 format

<RunName>-imped.wrl impedent panels location in VRML2 format

<RunName>-unormals.vtk unit normal vectors on the boundary in
VTK format

<RunName>-body.raw surface panels in raw–data format to be
imported in Blender

<RunName>-surf-<XX.YYYY>Hz.vtk solution on the boundary in VTK format

<RunName>-mics-<XX.YYYY>Hz.vtk solution at the microphones in VTK format

<RunName>-surf-<XX.YYYY>Hz.msh solution on the boundary in Gmsh v2.2

format

<RunName>-mics-<XX.YYYY>Hz.msh solution at the microphones in Gmsh v2.2

format

<RunName>-surf-<XX.YYYY>Hz.out solution on the boundary in space—
separated text format

<RunName>-mics-<XX.YYYY>Hz.out solution at the microphones in space—
separated text format

<RunName>-fresp-cntZZ.out frequency response at control point ZZ in
space—separated text format

<RunName>-fresp-micZZ.out frequency response at microphone ZZ in
space—separated text format

provided in the runinfo block of the configuration file (see Appendix A), <XX.YYYY> is
the value of the frequency in Hz, <ZZ> represents the indices of the control points and
microphones for which the frequency response is required. Note that there no limitation
in the number of frequencies that can be solved in a single run.

3To help the user in retrieving data from a large archives, such those produced by heavy simulation
campaigns, extensive parametric analyses, or simply by a long-lasting use of the code, an interface to the
MySQL database is under development. An early experimental version is included in this distribution.
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Starting from version AcouSTO v1.6, the output files are saved under a
single directory. The default location of the directory is the where the
config file is, and its name follows the convention <RunName>-YYYY-MM- DD.
Location and name of the output directory can be modified using the
dedicated input variables (see Appendix A). In particular, it is possi-
ble to change the time format using the variable dirsuffix and stan-
dard time format strings. For example, to append the time of the run
in the format HH-MM-SS, include in the runinfo block the declaration
dirsuffix="%F-%H-%M-%S";

For complex geometries, when a large number of frequencies is analyzed, the output of
AcouSTO produces a large number of files, which can take a significant amount of disk
space, and make your working directory a mess quite soon (a well organized mess, but
always a mess). To keep your working space clean, the output on the VRML, the frequency
response, and the VTK and Gmsh files can be deactivated through the configuration flags
printwrl, printfresp, printout, printmsh, and printvtk, respectively.4

The *.out files can be used directly to generate 2D and 3D plots using simple plotting
programs. We use primarily gnuplot (http://www.gnuplot.info) or Grace (http://plasma-
gate.weizmann.ac.il/Grace/), both available for free on all the hardware/software platforms.
In addition, such a simple format it can be easily read by ancillary codes produced by the
user and further processed to meet specific requirements, without modification of the
AcouSTO sources. An example of the pictures that can be obtained using this format is
given in Fig. 4.3.

4Warning to users: not all the output-control flags are active in the beta version of the code.
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Figure 4.3: Polar plot obtained using gnuplot on the AcouSTO output without additional
post–processing. Scattering of a plane wave by a sphere of unit radius (ka = π plus CHIEF
regularization).

Figure 4.4: 3D visualization obtained using mayavi and the *.vtk AcouSTO output files,
without additional post–processing.

AcouSTO has no limitations in the complexity of the geometry of the domain. In order
to visualize effectively the three–dimensional acoustic field, we included the possibility to
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save the solution in VTK format (http://www.vtk.org), and the geometry of the boundary
in VRML2 format (http://www.web3d.org). The files so obtained can be read by a number
of platform–independent, open–source tools, to produce impressive high–quality pictures
of your simulations. The authors use primarily mayavi (http://mayavi.sourceforge.net/)
and paraview (http://www.paraview.org), but any other software compatible with these
formats should work as well.

If the basic visualization features enabled in the AcouSTO release doesn’t match the user’s
need, the source code has to be modified in order to obtain the output in the desired
format. The programmer’s manual is under development, and will be published soon.

61 c© U. Iemma & V. Marchese



Bibliography

[1] A. D. Pierce, Acoustics - An Introduction. Its Physical Principles and Applications,
Acoustical Society of America, New York, 1989.

[2] A. Hirshberg and S.W. Rienstra, An Introduction to Acoustics. Available at
http://www.win.tue.nl/ sjoerdr/papers/boek

[3] Harry A. Schenck, Improved Integral Formulation for Acousti Radiation Problems,
Journal of the Acoustical Society of America, vol. 44, no. 1, pp. 41–89, 1967.

[4] A. F. Seybert and T. K. Rengarajan, The use of CHIEF to obtain unique solutions
for acoustic radiation using boundary integral equations, Journal of the Acoustical
Society of America, vol. 81, no. 5, pp. 1299-1306,1987.

[5] M. Gennaretti and U. Iemma, CHIEF regularization approach for aeroacoustoelastic
analysis in state-space format, Journal of Fluids and Structures, vol. 17, n. 7, pp.
983-999, 2003.

[6] Colton, D. and Kress, R., Integral Equation Methods in Scattering Theory, John
Wiley & Sons, New York, 1983.

[7] Morino, L., Is There a Difference Between Aeroacoustics and Aerodynamics? An
Aeroelastician’s Viewpoint, AIAA Journal, vol. 41, part 7, pagg. 1209–1223, 2003

[8] Iemma, U. and Gennaretti, M., A Boundary-Field Integral Equation for identification
of acoustic spectrum of cavities, AIAA Paper 2003-3161, 2003.

[9] Morino, L., Boundary Integral Equations in Aerodynamics, Applied Mechanics Re-
view, vol. 46, n. 8, pagg. 445-466, 1993

[10] Baker, A.H., Jessup, E. R., Kolev, T. V., A simple strategy for varying the restart
parameter in GMRES(m), Journal of Computational and Applied Mathematics, 2007.

[11] Burton, A. J. and Miller, G., The application of integral equation methods for numer-
ical solution of exterior boundary value problems, Proceedings of the Royal Society,
London, vol. A232, page. 201-210, 1971.

62



Configuration file reference

APPENDIX A

This is where you learn about
how to edit the configuration file
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A.1 Command line option

A.1 Command line option

The configuration file to be used is set with the command line option

-f <cfgfile> or --dat-file=<cfgfile>

The presence of this option is mandatory to run the code. The other valid options for
AcouSTO are:

-V, --version print version and exit

-h, --help print help

-l, --log-level <n> set log level(defaults to INFO) : 0 - ERROR

1 - WARN

2 - INFO

3 - DEBUG

A.2 Configuration file syntax

The configuration file must include the following blocks:

A.2.1 runinfo

The ”runinfo” block contains general parameters and information about the run:

runinfo = {

title = <title of the run>;

owner = <name of the run’s owner>;

kdebug = <debug parameter (unused)>;

ksymmi = <symmetry flag>;

vsound = <sound speed, 343 m/s for standard air>;

krow = <number of matrix rows to be loaded>;

nprows = <number of rows of process grid>;

npcols = <number of cols of process grid>;

row_block_size= <blocking factor for rows>;

col_block_size= <blocking factor for cols>;
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out_filedir= <name of the output files parent directory>;

out_filepath= <location path of the parent directory>;

dirsuffix= <time stamp suffix of the parent directory>;

};

If you do not specify the number of process rows and columns for the process grid,
AcouSTO will try to calculate the grid dimensions using the available number of processes.

A.2.2 modgeom

The ”modgeom” block is used to define the geometries of the problem:

modgeom = {

active = <geometry generation active>;

outbody = <output flag (unused)>;

outcntr = <output flag (unused)>;

outnormal = <output flag (unused)>;

outmics = <output flag (unused)>;

geoms = [ <list of names of geometry sections separated by a comma> ];

chief_file = <name of file with CHIEF points>;

mics_file = <name of file with microphones coordinates>;

nchief = <number of chief points in chief_file>;

nmics = <number of microphones in mics_file>;

};

the geometries are defined in different sections the names of which are listed in the ”geoms”
parameter.

Example:

modgeom={

active = 1;

geoms = ["sphere1","nodes1"]; # this defines two blocks named

# sphere1 and nodes1 and defined below

...

}

...

sphere1={
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type = "sphere"; # a sphere

radius = 1.0; # with radius=1

segments = 8; # 8 segments

rings = 9; # and 9 rings = 72 elements

}

nodes1={

type = "nodes"; # a nodes block

filename = "mynodes.in"; # defined in mynodes.in file

nnodb = 128; # 128 nodes

nelmb = 72; # 72 elements

ncntr = 72; # 72 control points

translation = { x=10.0; y=0.0; z=0.0;}; # translation

rotation = { x=0.0; y=0.0; z=30.0;}; # no rotation

}

Acousto can generate different types of geometries or read a geometry from a file with
fixed format. The available types for the geometries are:

• sphere

• cylinder

• plate

• nodes

• gmsh

the syntax for the sections of the different geometries type is described in the following
sections.

Sphere

The syntax for the block defining a sphere is:

sphere1={ # geometry name ( "geoms" parameter of the modgeom block)

type = "sphere";

radius = <radius>;

segments = <n.of segments>;

rings = <n.of rings>;

}
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Note that with segments e indicate the number of slices along the longitude of the sphere,
whereas rings indicate the number of parallel lines along the latitude. This unusual
conventions was chosen to comply with the one used by Blender.

Cylinder

The syntax for the block defining a cylinder is:

cyl1={ # geometry name ( "geoms" parameter of the modgeom block)

type = "cylinder";

radius = <radius>;

segments = <n.of segments>;

rings = <n.of rings>;

length = <length of the cylinder>;

}

Plate

The syntax for the block defining a plate is:

plate1={ # geometry name ( "geoms" parameter of the modgeom block)

type = "plate";

l1 = <X length>;

l2 = <Y length>;

n1 = <n. of elements in X>;

n2 = <n. of elements in Z>;

}

It is important to notice that the plate geometry generates an open surface that cannot
be used as an isolated body. Each object in a BEM simulations must be a bounded by
a closed surface. The plate geometry is meant to be a tool to generate a closed surface
using multiple plates, properly located and rotated (e.g., six equal plates can form a cube).

Nodes

The syntax for the block defining a generic geometry read from a nodes file in AcouSTO na-
tive format is:

nodes1={ # geometry name ( "geoms" parameter of the modgeom block)
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type = "nodes";

filename = <name of the file where the nodes are>;

nnodb = <number of nodes>;

nelmb = <number of elements>;

ncntr = <number of control points to be generated>;

}

Gmsh

The syntax for the block defining a generic geometry read from a Gmsh file is:

gmsh1={ # geometry name ( "geoms" parameter of the modgeom block)

type = "gmsh";

filename = <name of the file where the nodes are>;

symvec = {xcomp; ycomp; zcomp;}; # vector for symmetrization

refpoint = {xcoor; ycoor; zcoor;}; # reference point for symmetrization

}

Scaling and rigid transformations

Note that all the geometries (sphere, nodes, gmsh, cylinder and plate) can be scaled,
moved and rotated simply by adding to their input blocks the entries

mygeom={

...

scale = {

x = <x scaling factor>;

y = <y scaling factor>;

z = <z scaling factor>;

};

translation = {

x = <x translation>;

y = <y translation>;

z = <z translation>;

};

rotation = {

x = <rotation around X axis in degrees>;

y = <rotation around Y axis in degrees>;

z = <rotation around Z axis in degrees>;

};

}
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The nodes are first scaled, then rotated around x, y, and z in the order, and finally
translated.

A.2.3 modsol

The ”modsol” block defines the solution parameters:

modsol ={

active = <solution active >;

solver ="GMRES" or "PSEUDOINV "; <controls the solver type >

tolerance =1E-6; <tolerance for iteration convergence check >

maxiterations =1000; <maximum number of GMRES iteration >

pre_calculate_coefs =1 <activates storage of coefficients in RAM >;

rho = <density , 1.225 Kg/m^3 for standard air >;

nsig = <number of samples for sigma >;

minsig = <min value for sigma >;

maxsig = <max value for sigma >;

nome = <number of samples for omega >;

minome = <min value for omega - in rad/sec >;

maxome = <max value for omega - in rad/sec >;

minfreq = <min value for frequency - in Hz >;

maxfreq = <max value for frequency - in Hz >;

nsourc = <number of sources >; ! Sources and primary field

sources_file = <name of file with sources coordinates and frequency >;

nplanw = <number of planar waves >;

planw_file = <name of planar waves file >;

dirneu = (1/2) <Dirichlet (1) or Neumann (2) boundary conditions >;

knw = (1/2) <Formulation A (1) or formulation B (2)) >;

custombc =(0/1/2); <Format of boundary conditions input files >

# <data needed if custombc =0 (or absent)- begin >

nimped = <number of impedent panels >;

impedance_real = <real value of the impedance (if nimped < 0)>;

impedance_imag = <imaginary value of the impedance (if nimped < 0)>;

imped_file = <name of impedent panels files (if nimped > 0) >;

nradian = <number of radiant panels >;

radiant_real = <real intensity of the radiant field (if nradian < 0) >;

radiant_imag = <imaginary intensity of the radiant field(if nradian < 0)>;

radiants_file = <name of radiant panels file (if nradian > 0) >;

# <data needed if custombc =0 (or absent)- end >

# <data needed if custombc=1- begin >

bc_lambda_file ="name of lambda file"

bc_gamma_file = "name of gamma file"

bc_func_file = "name of func file"
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bc_g_file = "name of vector g file"

# <data needed if custombc=1- end >

# <data needed if custombc=2- begin >

gmshbc =[" phys1", "phys2 "];

phys1 ={

tag = <tag of physical group 1>;

re_lambda = real part of λ;
im_lambda = imaginary part of λ;
re_gamma = real part of γ;
im_gamma = imaginary part of γ;
re_f = real part of f ;
im_f = imaginary part of f ;

};

phys2 ={

tag = <tag of physical group 2>;

...

};

# <data needed if custombc=2- end >

printvtk = 1 <flag to activate output in VTK format >;

printout = 1 <flag to activate output in ASCII format >;

printwrl = 1 <flag to activate output in VRML2 format >;

printmsh = 1 <flag to activate output in GMSH 2.2 ASCII format >;

};

sigma and omega are the real and imaginary parts of the Laplace variable, s = σ+jω. The
user can choose to provide the frequency range in radiants/second using the fields minome
and maxome, or in cycles/second (Hz) with the fields minfreq and maxfreq. Note that
only minome and maxome are used if the config file includes all the four fieds.

Frequency response analysis

AcouSTO allows you to perform a frequency response analysis writing in special output
files (see B.3) the Total Pressure at chosen microphones and the values of the Potential
at chosen control points on the surface for each one of the evaluated frequencies. In order
to enable the writing of the frequency response analysis files you can add the following
variables to the modsol section of the configuration file:

freq_resp_cnt=[<index of control points separated by comma>];

freq_resp_mic=[<index of microphones separated by comma>];

Thus, if you want to have the Total Pressure at microphones 1, 3 and 5 and the Potential
at control points 10,20 and 301 you can modify the modsol section as follows:

1Please note that both microphone and control point indices are 0–based
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modsol={

...

freq_resp_mic=[1,3,5];

freq_resp_cnt=[10,20,30];

}
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APPENDIX B

This is where you learn about
input data format
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Note that in the following, all the indices are supposed to be zero-based.

B.1 Geometry input files

B.1.1 Nodes file

NNODB lines with nodes coordinates separated by spaces, and NELMB lines containing
the topology connection array jnodb. Note that the nodes indices stored into jnodb are
1-based.

nodes(1,1) nodes(2,1) nodes(3,1)

nodes(1,2) nodes(2,2) nodes(3,2)

nodes(1,3) nodes(2,3) nodes(3,3)

...

nodes(1,NNODB) nodes(2,NNODB) nodes(3,NNODB)

jnodb(1) jnodb(2) jnodb(3) jnodb(4)

jnodb(5) jnodb(6) jnodb(7) jnodb(8)

...

jnodb(NVELB-3) jnodb(NVELB-2) jnodb(NVELB-1) jnodb(NVELB)

B.1.2 Microphones file - Native AcouSTO format

On the first line, the dimensions of the microphones grid, then NMICS lines with the
microphones coordinates separated by spaces.

NMICSX NMICSY NMICSZ DXMICS DYMICS DZMICS

xmics(1,1) xmics(2,1) xmics(3,1)

xmics(1,2) xmics(2,2) xmics(3,2)

xmics(1,3) xmics(2,3) xmics(3,3)

...

xmics(1,NMICS) xmics(2,NMICS) xmics(3,NMICS)

If the microphones are not ordered in a structured grid, then set NMICSX = NMICS
and NMICSY = NMICSZ = 1.
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B.2 Acoustic environment input files

B.2.1 Sources file

NSOURC lines with the coordinates of each point source separated by spaces, followed by
the real and imaginary parts of the corresponding source amplitude, separated by spaces.

xsour(1,1) xsour(2,1) xsour(3,1) Re[ampl(1)] Im[ampl(1)]

xsour(1,2) xsour(2,2) xsour(3,2) Re[ampl(2)] Im[ampl(2)]

...

xsour(1,NSOURC) xsour(2,NSOURC) xsour(3,NSOURC) Re[ampl(NSOURC)] Im[ampl(NSOURC)]

B.2.2 Standard boundary conditions

Planar waves file

NPLANW lines with the x,y, and z components of the wave unit vector for each plane wave
in the field, separated by spaces, followed by the real and imaginary parts of the corre-
sponding wave amplitude, separated by spaces.

wvec(1,1) wvec(2,1) wvec(3,1) Re[ampl(1)] Im[ampl(1)]

wvec(1,2) wvec(2,2) wvec(3,2) Re[ampl(2)] Im[ampl(2)]

...

wvec(1,NPLANW) wvec(2,NPLANW) wvec(3,NPLANW) Re[ampl(NPLANW)] Im[ampl(NPLANW)]

Radiant panels file

NRADIAN lines with the indices of the radiating panels, followed by the real and imaginary
parts of the corresponding radiation

iradian(1) Re[ampl(1)] Im[ampl(1)]

iradian(2) Re[ampl(2)] Im[ampl(2)]

...

iradian(NRADIAN) Re[ampl(NRADIAN)] Im[ampl(NRADIAN)]

If NRADIAN<0 the code reads the first line and associate the complex amplitude to the
whole boundary.
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Impedent panels file

NIMPED lines with the indices of the impedent panels, followed by the real and imaginary
parts of the corresponding impedance

izimp(1) Re[zimp(1)] Im[zimp(1)]

izimp(2) Re[zimp(2)] Im[zimp(2)]

...

izimp(NIMPED) Re[zimp(NIMPED)] Im[zimp(NIMPED)]

If NIMPED<0 the code reads the first line and associate the complex impedance to the whole
boundary.

B.2.3 Custom boundary conditions

The content of the files defining the acoustic properties of the boundary changes if the
geometry is given in the AcouSTO native format (nodes file or built–in pre–processor) or
using the Gmsh format.

AcouSTO native format

The files collecting the values of the custom boundary condition functions must
contain a number of lines equal to the number of panels you want to assign a value
for the functions. The format of each line is

ielmb Re[gamma(ielmb,ifreq)] Im[gamma(ielmb,ifreq)] for the γ file

ielmb Re[lambda(ielmb,ifreq)] Im[lambda(ielmb,ifreq)] for the λ file

ielmb Re[func(ielmb,ifreq)] Im[func(ielmb,ifreq)] for the f̃ file

If the above files provide a value for the boundary condition of only a subset of
panels, the remaining ones are assumed by default to be acoustically rigid, i.e.,
λ = 1, γ = 0, and f̃ = 0.

Gmsh format

Using a .msh file generated by Gmsh , the files collecting the values of the custom
boundary condition functions are generated by AcouSTO from the config file entries
(see Sections 4.3 and A.2) using the fixed naming scheme

bc lambda file = "exported gmshbc lambda.dat"

bc gamma file = "exported gmshbc gamma.dat"
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bc func file = "exported gmshbc func.dat"

These files are supposed to be temporary files and not stored within the generated
output folder. Nevertheless, they are deliberately not removed at the end of the job,
to grant to the user the possibility to save them somewhere else (foe example, to use
them with an earlier version of AcouSTO ).

Again, if the above files provide a value for the boundary condition on only a subset
of the physical groups defined, the remaining ones are assumed by default to be
acoustically rigid, i.e., λ = 1, γ = 0, and f̃ = 0.

In both cases, the g vector input file must include only one line (if longer, only the first
record is read) containing the three components of g

g(1) g(2) g(3)

B.3 Output files

The output files produced by AcouSTO are listed in Table 4.6. Here, we provide details
about their format and content. The flag printvtk is available to enable the output on
the *.vtk files. The *.out and *.wrl files are always produced.

When dirneu=1, the output files related to the boundary contain ∂ϕ̃/∂n,
the normal derivative of the fucntion ϕ̃, since this is the function
AcouSTO solves for in this case.

B.3.1 VRML Files

• <RunName>-surface.wrl

This file contains the entire geometry of the boundary. The surfaces are modeled as an
IndexedFaceSet node without creaseAngle, in order to preserve the actual geometry of
the panels. Default VRML RGB color is (1, 0, 0).

• <RunName>-controls.wrl

This file contains the location of the control points on the boundary. Each point is rep-
resented by a sphere having radius r = 0.02. This value should be changed to fit with
the overall dimensions of the boundary, when a global picture is needed (an automatic
adjustment of the radius will be included in the future). Default VRML RGB color is
(0, 1, 0).
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• <RunName>-mics.wrl

This file contains the location of the microphones in the field. Each point is represented
by a sphere having radius r = 0.02. This value should be changed to fit with the overall
dimensions of the boundary, when a global picture is needed (an automatic adjustment of
the radius will be included in the future). Default VRML RGB color is (0, 1, 1).

• <RunName>-chief.wrl

This file contains the location of the additional interior control points for CHIEF regular-
ization. Each point is represented by a sphere having radius r = 0.02. This value should
be changed to fit with the overall dimensions of the boundary, when a global picture is
needed (an automatic adjustment of the radius will be included in the future). Default
VRML RGB color is (0.7, 0.7, 0.7).

• <RunName>-sources.wrl

This file contains the location of the point sources. Each point is represented by a sphere
having radius r = 0.02. This value should be changed to fit with the overall dimensions
of the boundary, when a global picture is needed (an automatic adjustment of the radius
will be included in the future). Default VRML RGB color is (0, 1, 0.4).

• <RunName>-radiants.wrl

This file contains the radiant panels. Each panel is represented as a polygon belonging to
an IndexedFaceSet node. Default VRML RGB color is (1, 0, 1).

• <RunName>-imped.wrl

This file contains the impedent panels. Each panel is represented as a polygon belonging
to an IndexedFaceSet node. Default VRML RGB color is (1, 0.5, 0).

B.3.2 VTK Files

• <RunName>-surf-<XX.YYYY>Hz.vtk

This file contains the solution on the boundary. The data are formatted as DATASET

POLYDATA, associated to the panels by the nodes–vertices topology connection function.
The scalar fields that can be visualized are:

1. real part, imaginary part, and absolute value of the incident field;

2. real part, imaginary part, and absolute value of the scattered field;
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3. real part, imaginary part, and absolute value of the total field.

<XX.YYYY> is the value of the frequency in Hz. In multiple–frequency runs, one file is
produced for each frequency.

• <RunName>-mics-<XX.YYYY>Hz.vtk

This file contains the field at the microphones array. If the microphones file is in native
AcouSTO format, then the data are formatted as DATASET UNSTRUCTURED GRID. The scalar
fields that can be visualized are:

1. real part, imaginary part, and absolute value of the incident field;

2. real part, imaginary part, and absolute value of the scattered field;

3. real part, imaginary part, and absolute value of the total field;

4. total field in Db;

5. insertion loss, defined as

IL = 20 log
ϕ̃ in + ϕ̃ sc

ϕ̃ in

<XX.YYYY> is the value of the frequency in Hz. In multiple–frequency runs, one file is
produced for each frequency.

B.3.3 Gmsh msh Files

• <RunName>-surf-<XX.YYYY>Hz.msh

This file contains the solution on the boundary using the Gmsh mesh format. The scalar
fields that can be visualized are:

1. real part, imaginary part, and absolute value of the incident field;

2. real part, imaginary part, and absolute value of the scattered field;

3. real part, imaginary part, and absolute value of the total field.

<XX.YYYY> is the value of the frequency in Hz. In multiple–frequency runs, one file is
produced for each frequency.

• <RunName>-mics-<XX.YYYY>Hz.msh
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This file contains the pressure at the microphones array using the Gmsh mesh format. The
scalar fields that can be visualized are:

1. real part, imaginary part, and absolute value of the incident field;

2. real part, imaginary part, and absolute value of the scattered field;

3. real part, imaginary part, and absolute value of the total field;

4. total field in Db;

5. insertion loss, defined as

IL = 20 log
ϕ̃ in + ϕ̃ sc

ϕ̃ in

<XX.YYYY> is the value of the frequency in Hz. In multiple–frequency runs, one file is
produced for each frequency.

B.3.4 Plain text files

• <RunName>-body.raw

This files contains the complete set of BEM panels, in raw–data format. The raw-data
format can be easily imported Blender (as well as in most of the 3D modelers). Each file
record contains the coordinates of the four vertices.

x1 y1 z1 x2 y2 z2 x3 y3 z3 x4 y4 z4

The order affects the orientation of the normal vector.

• <RunName>-surf-<XX.YYYY>Hz.out

This file contains the solution at all the control points on the boundary, formatted in ten
space–separated columns. The header of the file is formatted so as to appear as a comment
when processed by gnuplot. The header includes all the relevant informations about the
file content. Its format is

# Run name = <RunName>

# Run owner = <RunOwnerName>

# Cfg file = <ConfigFileName>

# Frequency = sigma + i*omega ( <XX.YYYY> Hz)

#

# 1 2 3 4 5 6 7 8 9 10 11 12 13

# inod xnod ynod znod re(inc) im(inc) abs(inc) re(scat) im(scat) abs(scat) re(tot) im(tot) abs(tot)

<XX.YYYY> is the value of the frequency in Hz. In multiple–frequency runs, one file is
produced for each frequency.
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• <RunName>-mics-<XX.YYYY>Hz.out

This file contains the solution at the microphones array, formatted in sixteen space–
separated columns. The header of the file is formatted so as to appear as a comment
when processed by gnuplot. The header includes all the relevant informations about the
file content. Its format is

# Run name = <RunName>

# Run owner = <RunOwnerName>

# Cfg file = <ConfigFileName>

# Frequency = sigma + i*omega ( <XX.YYYY> Hz)

#

# 1 2 3 4 5 6 7 8 9 10 11 12 13

# imic xm ym zm re(inc) im(inc) abs(inc) re(scat) im(scat) abs(scat) re(tot) im(tot) abs(tot)

<XX.YYYY> is the value of the frequency in Hz. In multiple–frequency runs, one file is
produced for each frequency.

• <RunName>-fresp-cntZZ.out

This set of files contains the frequency response at the control points selected with the
freq resp cnt entry of the modsol block of the config file. The format is

# Frequency response at control point ZZ

ifreq omega[rad/s] freq[Hz] re(phi) im(phi) abs(phi)

where phi is the total potential.

• <RunName>-fresp-micZZ.out

This set of files contains the frequency response at the microphones selected with the
freq resp mic entry of the modsol block in the config file. The format is

# Frequency response at microphone ZZ

ifreq omega[rad/s] freq[Hz] re(inc) im(inc) abs(inc) re(scat) im(scat) abs(scat) re(tot) im(tot) abs(tot)

80 c© U. Iemma & V. Marchese



The Blender plugin

APPENDIX C

This is where we learn about
AcouSTO and Blender
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C.1 Installation on Blender ≤ 2.47

AcouSTO does not include a dedicated geometry pre-processor, and there are currently no
plans to do so. For simple geometries, the generation and formatting of the data needed
by the code is very simple, and can be easily accomplished with basic programming tools
even by users with limited programming skills. This could not be true anymore when
dealing with complex domains (AcouSTO has no limitations, in this respect!). To help the
user, the AcouSTO distribution includes a simple plugin for the 3D creation suite Blender

(http://www.blender.org), a powerful, cross–platform, open–source modeler.

The installation of the plugin is straightforward, but it changed considerably starting
from Blender version 2.5.X. For this reason the distribution of AcouSTO v1.4 includes also
a newer version of the plugin, compatible with Blender ≥ 2.5.

Please note that both the versions of the Blender plugin export the nodes so as to have
unit normal vectors pointing outside the surface. If the user wants to perform the acous-
tic analysis of the enclosure bounded by the surface has to modify the nodes ordering
according to the instructions in Section 3.1.

C.1 Installation on Blender ≤ 2.47

Figure C.1: AcouSTO export plugin for Blender ≤ 2.47.

You just need to copy the file acousto export.py to the default directory of blender
scripts (<blender install dir>/.blender/scripts). Under MacOSX, the directory is hidden
inside the blender.app package. The script must be copied from the terminal window to
the path
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/Applications/<blender dir>/blender.app/Contents/MacOS/.blender/scripts

After you have selected the geometry you want to write in the AcouSTO nodes file you can
export it by selecting File->Export->AcouSTO Nodes and the geometry will be written
in AcouSTO format.

C.2 Installation on Blender ≥ 2.6

Figure C.2: AcouSTO export plugin for Blender ≥ 2.5.

To install the new version of the plugin, the entire folder io mesh acousto must be copied
to the scripts/addons directory. If you are using versions newer than 2.65, be
sure to use the right script included in the distribution. To find the exact location
of the installation directory on the different operating systems, please refer to

http://wiki.blender.org/index.php/Doc:2.6/Manual/Extensions/Python/Add-Ons.

Once that the python scripts are in the correct place, you must activate the add-on through
the Blender File>User Preferences... menu, under the Addons tab (see Fig. C.3).

To export nodes in AcouSTO format you have to select the geometry you are interested
into, choose File-> Export->AcouSTO Nodes and input the file name.

Note that the newer versions of the scripts save two files:

• FILENAME.<n.elem>.<n.vert>.nodes - Contains the nodes and the topology. This
is the file that must be provided as an input to AcouSTO .
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Figure C.3: Enabling the AcouSTO export plugin in Blender ≥ 2.5.

• FILENAME.centroids.<n.elem>.<n.vert>.nodes - Contains the centers of the el-
ements. This file is not required to run AcouSTO but could be useful to evaluate
various quantities with external codes (e.g., aeroacoustic simulations).
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MySQL support

APPENDIX D

This is where you can
handle huge databases
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D.1 Enabling MySQL support

D.1 Enabling MySQL support

AcouSTO can save information about its execution on a MySQL database if this feature is
enabled with the option --enable-mysql=yes given to the configure script.

D.2 Database creation

AcouSTO needs a custom database to save execution information. The steps required to
create this database are the following1:

1. create the database with the command:

mysqladmin -u <dba user> -p create acoustorun

where <dba user> is the username of the MySQL administrator

2. connect to mysql with the command

mysql -u <dba user> -p

3. create a valid user and grant him access rights to the database with the command

grant all on acoustorun.* to ’<acousto username>’@’localhost’

identified by ’<acousto password>’

where <acousto username> and <acousto password> are username and password
of the user you want to create (without the angular brackets)

4. create the tables with the command

mysql -U <acousto username> -p acoustorun < acousto.sql

The script acousto.sql is in the directory mysql of the distribution.

To allow AcouSTO to save on MySQL you must also add a configuration section to your
configuration file as in the following:

mysql={

active =<mysql flag>

1you need a MySQL administration user and password to create the database. If you don’t know them,
please ask your system administrator
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host=<mysql hostname>;

port=<mysql port>;

user=<acousto user>;

password=<acousto password>;

db=<acousto db name>;

};

where:

• <mysql flag> is 1 if you want to activate MySQL storing, 0 otherwise.

• <mysql hostname> is the name of the host where MySQL runs.

• <mysql port> is the the port MySQL listens to.

• <acousto user> is the user with access rights to the acousto database.

• <acousto password> is the password

• <acousto db name> is the name of the database (in the previous steps we called
it “acoustorun”

D.3 Data storage and retrieving

AcouSTO MySQL features stores run information in two different tables: runinfo and
rundata.

D.3.1 RUNINFO

The structure of table runinfo is reported in Table D.1

D.3.2 RUNDATA

The table rundata contains the execution results and configuration stored as BLOB (Bi-
nary Large OBject) data. These data can be retrieved and printed to the standard output
in readable form by using the additional ac mysqlread program that supports the follow-
ing options
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Column Description

runid primary key auto generated

categoryid Id of execution category. This defaults to 1.

username username of the user who has launched acousto master node process.
An entry with the same username must be present in the table runuser

title Title of execution. This is taken from the configuration file

program Defaults to acousto

version Version of AcouSTO

datestart Start date of execution

dateend End Date of execution

elapsed elapsed time in seconds

hostname name of host on which the process of AcouSTO master node has run

hosthos name of OS on which the process of AcouSTO master node has run

nnodes number of nodes of the run

notes Additional notes (not used)

Table D.1: runinfo table structure

-h, --mysql-host=<hostname> set {\tt MySQL} host (default=localhost)

-P, --mysql-port set {\tt MySQL} port (optional)

-u, --mysql-user set {\tt MySQL} User

-d, --mysql-dbname set {\tt MySQL} Database name

-p, --mysql-password set {\tt MySQL} Password

-r, --run-id set Run id as saved in the DB

-n, --data-name set Name of data to be retrieved

-V, --version output version information

-h, --help this help guide

The valid values for the -n, –data-name option are:

• ACOUSTO CONFIG configuration file

• ACOUSTO BODY TOT total potential at the control points

• ACOUSTO BODY INC incident potential at the control points

• ACOUSTO BODY SCA scattering potential at the control points

• ACOUSTO MICS TOT total potential at microphones

• ACOUSTO MICS INC incident potential at microphones

• ACOUSTO MICS SCA scattering potential at microphones
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If you want, for instance, to save the configuration file for the run saved with id 1102 you
can issue the following command 3:

ac_mysqlread -h localhost -u acousto -p acousto -r 110 -d acoustorun \

-n ACOUSTO_CONFIG > run110.cfg

If you want to save the Scattering potential at microphones for the run saved with id 110
you can issue instead the following command:

ac_mysqlread -h localhost -u acousto -p acousto -r 110 -d acoustorun \

-n ACOUSTO_MICS_SCA > run110.pressure

the output will be a file containing the scattering potential for each calculated frequency4.

D.4 Web frontend to MySQL (beta)

Included in the distribution there is a small php application to easily access the database
once filled with data. In order to run it you must have a working LAMP (Linux-Apache-
MySQL-PHP) software stack working (although Linux is not a strict requirement). You
can install the web application by simply copying the content of the php folder in a
folder of your choice that is under your web site document root (please refer to Apache
documentation for details). Then you must change the acousto mysql.php file in order to
reflect your database configuration. Point your browser to the web url of the AcouSTO php
application you configured and you should be able to see a page like the one in D.1. You
can access the details of a run by clicking on the run name in the first column of the table
and you will be presented a page like the one in D.2 from which you can download the
configuration file and the results.

2if the MySQL feature is enabled, after completing the run the logging system of AcouSTO outputs the
run id with the string “Run was stored with id -> ...”

3we assume here userid=acousto, password=acousto, dbname=acoustorun
4each group of values is separated by a header prepended by a # with the information on the complex

frequency
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Figure D.1: Homepage of the web application

Figure D.2: Run details
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